比与比例教学设计
作为一名专为他人授业解惑的人民教师,时常需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么你有了解过教学设计吗?以下是小编精心整理的比与比例教学设计,仅供参考,希望能够帮助到大家。
比与比例教学设计1
教学目标:
知识与技能:
1、使学生进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。
2、使学生能利用正反比例的意义解答比较简单的应用题,巩固和加深对所学的简易方程的认识。
3、培养学生的分析、判断和推理能力。
过程与方法:
经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。
情感态度和价值观:
感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。
教学重点:用比例知识解决实际问题
教学难点:能够正确分析题中的比例关系,列出方程
一、复习铺垫,引入新课。
师:同学们,我们已经学习了哪两种比例?好,下面我们就来回忆一下有关正、反比例的知识。
师:你能准确地判断两个量之间的关系吗?下面我们来进行一个回合的抢答比拼:我会判断。(抢答要求:举手证明你有勇气,你会做,你没有抢答到但是你的手势判断正确,你仍然是最棒的。)
出示:下面每题中的两种量成什么比例?
(1)速度一定,路程和时间.
(2)路程一定,速度和时间.
(3)单价一定,总价和数量.
(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.
(5)全校学生做操,每行站的人数和站的行数.
二、探究新知
(一)用正比例的知识解决问题(探究例5)
1、师:(对于学生回答教师给予肯定)看样子同学们掌握的很不错,那么,学习了正反比例到底有什么用呢?(学生交流)来我们一起看看这节课的学习目标吧!
出示学习目标:
1、进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。
2、能利用正反比例的意义解答比较简单的应用题,掌握用比例知识解答问题的步骤和方法。
2、过渡语:学习知识就是为了解决问题,你能运用学过的知识去解决生活中的.问题吗?看,李大妈和张奶奶在讨论什么问题,想不想去看看!(出示情境图)
(让学生读李大妈的话进行体会,主要让学生体会到通过李大妈叙述的两个条件挖出隐含条件每吨水的价格以及水费和用水吨数之间的联系,感受水的单价一定)
师:这幅图中你能知道哪些信息?你能不能运用学过的方法来帮李奶奶解决这个问题?看谁最先帮李奶奶解决这个问题!
学生自己解答,然后交流解答方法。
师:除了这种方法我们还可以用什么方法来解决了?
生:比例
3、引入新课:对,像这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题
4、师:通过大家的表情,好像老师不用教,大家都敢尝试。大家敢不敢自己试试?(相信学生,鼓励他们运用已有的知识去获取新的知识,培养他们主动学习的意识,培养学生的自学能力体现教是为了不教。)
呈现自学提示:
(1)题中有哪两种相关联的量?
(2)这两种相关联的量成什么比例关系?你是怎么判断的?
(3)你能根据这样的比例关系列出一个含有未知数的比例式吗?
5、学生交流自学结果,相互补充,呈现一个完整的解答过程。、
师:谁来说说你是怎样用比例知识来解决问题的?
根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。
6、师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。)
7、师:比较这两种解法,你们觉得哪种方法更好理解?看来,我们在解决问题时,不光可以从不同角度思考,找到不同的解决方法,而且还要善于选择最优化的方法。当然,没有要求时,用什么方法都可以,但要求用比例解时必须用比例。
8即时练习
过渡语:同学们帮助李奶奶解决问题,李奶奶把大家认真学习,帮助她解决问题的事情告诉了邻居王大爷,李大爷正为上个月交了19.2元的水费但算不出用水都少吨而犯愁,就急匆匆地赶过来向大家请教,大家愿意帮帮他吗?
出示对话情景。
师:观察帮助要王大爷的问题和帮助李奶奶的事对比,你有什么发现?
在学生的交流中逐步认识到这道题与例5相比,条件和问题改变了,但题目中水费和用水的吨数的正比例关系没变。
师:这次还需不需要老师给你一个解决问题的提示?
一名同学在黑板上做,其余在下面做,形成一个竞赛的形式。演板的同学和大家交流自己的做题过程,教师进行鼓励和评价。
9、师:上面两道题就是用正比例解决问题,通过大家亲身实践,你感受到用正比例解决问题需要几个步骤吗?
(出示:表达是我的强项,让学生从学习提示、独立解决问题中逐步提炼归纳出自己做法,交流中逐步培养他们的表达能力。)
师:同学们真是很棒!通过自学能够感受到用比例解决问题的步骤,这次老师想考考你们是不是真正的掌握了?你们敢应战吗?
那么我们进行下一个环节:对比发现超越自我。
(二)用反比例的知识解决问题(学习P60例6)
师:解决了李奶奶、王大爷家的问题,下面的几个工人也遇到了问题,我们一起看一下吧。
1课件出示情境图,了解题目条件与问题
师:关于这个问题,同学们可以参考例5的学习经验来解决,看谁能用不同的方法来解决这个问题?
生:独立解决,并在小组交流解题思路和计算方法
师:谁来说说做这道题的解题思路(指名回答)
学情预设:一般的方法是:有的同学用算术方法,有的同学能用反比例的方法解决这个问题,如30x=20×18,x=12。
师:(教师手指30x=20×18,x=12。)为什么这样列式?根据是什么?
学情预设:估计学生能说出列式根据,因为书的总数一定,所以包数和每包的本数成反比例.也就是说,每包的本数和包数的乘积相等。
2.即时练习
(课件出示:)如果要捆15包,每包多少本?
师:会解决吗?
生:独立解决,交流订正。
3.对比正比例、反比例解决问题的相同和不同
师:通过这2个问题的解决,我们又了解到了用反比例意义也能帮助我们解决生活中的实际问题。现在请同学们观察例5和例6,说一说他们有什么相同和不同?
生:以合作的方式探讨,然后派代表汇报探讨结果。
比较以上两题的异同点,使学生明确都是用比例的知识解决问题,不同点在于题中两种量的关系不同,计算方法也就不相同。
三、目标检测
师:课本第60做一做,是生活中的另外的问题,同学们能不能帮助解决?(要求用比例知识解)
学生自己独立解决做—做中的问题。
师:请说一说题中的数量关系,再说一说解决问题的思路。
学情预设:第1题,小明买的是同一种圆珠笔,所以圆珠笔的单价不变。那么买的支数和所用的钱数成正比例关系,所以用正比例关系能解决这个问题。第2题,用反比例关系可以解决这个问题。
设计意图:再次让学生感受用比例的知识解决问题的方法,丰富解决问题的思路。
四、课堂小结
1、根据这节课的学习,你认为用比例解决问题的过程应该怎样想,怎样解答,可以归纳为哪几个步骤?(组内交流)
讨论、汇报、师小结:
(1)、分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例
(2)、依据正比例或反比例意义列出方程
(3)、解方程(求解后检验),写答
设计意图:学生通过自学掌握了运用正比例解决问题,在这组题目中是用反比例解决问题,学生在对比中初步感受到怎样运用反比例解决问题的过程。
2、师:这节课你有什么收获?有什么要提醒大家要特别注意的?
比与比例教学设计2
教学内容:义务教育课程标准实验教科书数学六年级下册P45练习十的第5—8题
教学目标:
1、使学生学会解比例的方法,会应用比例的基本性质解比例,进一步理解和掌握比例的基本性质。
2、让学生在经历探究的过程中,体验学习数学的快乐。
教学重点:学会解比例。
教学难点:掌握解比例的书写格式。
设计理念:在本课时的设计中,引导学生根据按比例放大图形,把相关数据组成比例,用未知数X来表示比例中的未知项,列出比例式。
在解比例的教学设计上,重点利用旧知的迁移,通过学生主动探索新知与旧知的联系,在比较分析中,把握规律,掌握解比例的方法。
教学步骤教师活动学生活动
一、练习引入
1、小练笔:
在()里填上合适的数。
5:4=():12
4:()=():6
2、教师:前面我们学习了一些比例的知识,谁能说一说怎样填空的?
3、比例的`基本性质是什么?这节课我们还要继续学习有关比例的知识。学生练习
学生回顾比例的基本性质
二、探索新知
出示例5,前面我们学习过图形的放大与缩小,李明把照片按比例放大,放大后长是13.5厘米,你能求他的宽吗?
(1)读题审题,理解题意
老师帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?引导学生理解放大前后的相关线段的长度是可以组成比例
(2)引导分析,写出比例
如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出含有未知数的比例式。
师介绍:“像上面这样求比例中的未知项,叫做解比例。
(3)找到依据,变形解答
讨论:怎样解比例?根据是什么?
思考:“根据比例的基本性质可以把比例变成什么形式?”
教师板书:6x=13.5×4。“这变成了什么?”(方程。)
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。
(4)、板书过程,总结思路
师生把解比例的过程完整地写出来。指名板书。
师问:第一步计算的依据是什么?
师生总结解比例的过程。
提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?”(先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)
(5)、练习提高,再说思路
做“试一试”,学生独立完成,再说说解题思路。
学生读题,分析题意
学生写出含有未知数的比例式
学生小组交流,大组汇报
学生交流总结思路:在解比例的过程中第一步是关键,是根据比例的基本性质把比例变成方程。下面和以前学习的解方程的方法一样。
学生独立练习,小组说明思路。
三、巩固练习
1、做“练一练”
2、做练习十第6、7题。
3、做练习十第8题
学生先说说按比例“缩小或放大“的含义。再列出相应的比例式并求解。
学生独立审题并解题。讲评时重点指导学生解决第(2)问。
四、比较提高。
1、通过本课的学习,你有哪些收获?
2、把你掌握的解比例的方法在小组里介绍一下,并在大组交流。
五、作业练习九第5、6题。
比与比例教学设计3
教学内容:人教版小学数学六年级下册内容
教学目标:
知识与技能:1.结合丰富的实例,认识反比例。2.能根据反比例的意义,判断两个相关联的量是不是反比例。
过程与方法:通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。
情感态度价值观:培养学生自主、合作学习、探索新知的能力,激发学习数学的热情。感受反比例关系在生活中的广泛应用。初步渗透函数思想。
教学重点:认识反比例,根据反比例意义判断两个相关联的量是否成
反比例。
教学难点:认识反比例,根据反比例意义判断两个相关联的量是否成
反比例。
教具准备:电脑课件
教学过程:
一、复习引入
1、计算
2、判断下面各题中的两种量是否成正比例?为什么?
(1)文具盒的单价一定,买文具盒的个数和总价。
(2)一堆货物一定,运走的量和剩下的量。
(3)汽车行驶的速度一定,行驶的路程和时间。
3、说说什么是正比例。
师:大家对正比例知识理解掌握得非常好,接下来我们就该学习什么了?
二、出示学习目标
1.能根据反比例的意义,判断两个相关联的量是不是反比例。 2通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。
3培养学生探索研究的能力,感受反比例关系在生活中的广泛应用。
三、指导自学
师:给你们讲个小故事:
有一个贪婪的财主,拿了一匹上好的布料准备做一顶帽子,到了裁缝店,觉得这样好的布料做一顶帽子似乎浪费了,于是问裁缝:“这匹布可以做两顶帽子吗?”裁缝看了看财主一眼,说:“可以。”财主见他回答得那么爽快,心想,这裁缝肯定是从中占了些什么便宜,于是又问,“那做3顶帽子吗?”裁缝依然很爽快地说:“行!”这时,财主更加疑惑了,嘀咕着:“多好的一匹布啊,那我做4顶可以吗”“行!”裁缝仍然很快地回答。经过一翻的较量后,财主最后问:“那我想做10顶帽子可以吗?”裁缝迟疑了一会,然后打量着财主,慢慢的说:“可以的。”这时财主才放下心来,心想:这匹布料如果只做一顶帽子,那就便宜裁缝了。瞧!这不让我说到10顶了吧。我还真
聪明!嘿嘿??
过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的帽子小得只能戴在手指头上了!
学习提示:
<一>独立思考?
1、“为什么同一匹布,裁缝说做1顶帽子,2顶帽子,10顶都可以呢?”
2、故事中相关的数量关系式是什么?哪两个是变化的量,怎样变?另一个是什么量?有什么特点?
<二>合作学习
小组讨论上述的问题。
<三>看书合作学习
1、把25页例2、例3的`表格补充完整。
2、每个表格中有哪些变量?有不变的量吗?分别是什么?变化有什么规律?相关的数量关系式是什么?
3、三个数量关系式有相同点吗?是什么?你能把这种变化规律用一个含有字母的关系式来表示吗?
4、你知道什么是反比例吗?
四、学生自学
五、检查自学效果
让学生说说自学要求中的内容。
师归纳:两种相关联的量,一种量随着另一种量的变化而变化,
在变化过程中两种量的积一定,那么这两种量成反比例。
六、引导更正,指导运用
你们还找出类似这样关系的量来吗?”
学生:要走一段路,速度越慢(快),用的时间就越多(少) 运一堆货物,每次运的越多(少),运的次数就越小(多) 百米赛跑,路程100米不变,速度和时间是反比例;
排队做操,总人数不变,排队的行数和每行的人数是反比例; 长方体的体积一定,底面积和高是反比例。
七、当堂训练
基础练习
1、填空
两种 _____ 的量,一种量随着另一种量变化,如果这两种量中相对应的两个数的______,这两种量叫做成反比例的量,它们的关系叫做_______关系。
2、判断下面每题中的两种量是不是成反比例,并说明理由。
(1)煤的总量一定,每天的烧煤量和能够烧的天数。
(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
(3)生产电视机的总台数一定,每天生产的台数和所用的天数。
(4)圆柱体的体积一定,底面积和高。
(5)小林做10道数学题,已做的题和没有做的题。
(6)长方形的长一定,面积和宽。
(7)平行四边形面积一定,底和高。
提高练习
1、一长方形的周长为20厘米,若长是9厘米,则宽是1厘米。请你填写下表,并判断这个长方形在周长不变的情况下,长和宽是否成反比例,并说明理由。长/cm9 8765
宽/cm1
四、小结
通过这节课的学习,你有什么收获?
这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。
板书:反比例
相关联,一个量变化,另一个量也随着变化积一定
xy=k(一定)
比与比例教学设计4
教学内容
教科书第58-59页例1,课堂活动及练习十三1-3题。
教学目标
1.使学生理解反比例的意义,能正确判断成反比例关系的量。
2.经历反比例意义的构建过程,培养学生的探索发现能力和归纳概括能力。
3.使学生体会反比例与生活的联系,进行辩证唯物主义观点的启蒙教育。
教学重点
引导学生正确理解反比例的意义。
教学难点
正确判断两种量是否成反比例。
教学过程
一、复习旧知,感受新知
情景游戏:对口令
(1)同样的面包单价:2元∕个。老师说个数,学生对总价(对口令的同时用课件展示出下表)。
表1买同样的面包
买的数量(个) 1 2 3 4 5……
总价(元) 2 4 6 8 10……
教师:面包总价与个数之间有什么关系呢?它们成什么比例?为什么?
反馈:面包的总价与个数成正比例。因为它们是两种相关联的量,面包个数扩大或缩小若干倍,总价也随着扩大或缩小相同的倍数,并且它们的比值(单价)一定。
根据学生的回答板书,成正比例的量所具有的三个特征:
①两种相关联的量②变化有规律③一定的量
(2)共有30个苹果分给小朋友。老师说出小朋友的人数,学生回答分得的苹果个数。(对口令的同时用课件展示出下表)
表2 30个苹果分给小朋友
小朋友的人数(人) 1 3 5 10……
每个小朋友分得个数(个)30 10 6 3……
从这个表中,你有什么发现?
反馈:小朋友的人数与每个小朋友分的个数的乘积都是30;它们是相关联的两种量;小朋友的人数越多,每个小朋友分得的苹果个数就越少……
提问:小朋友的人数与每个小朋友分得的苹果个数成正比例吗?为什么?
教师:那么这两种量到底是一种什么关系呢?今天我们就一起来学习新的知识。
二、对比探究,获取新知
1.感知几种不同的变化规律
(1)某旅游公司的导游带领60名游客来到井冈山游览,准备分组活动,提出的分组建议如下表。
表3 60名游客在井冈山游览
每组人数 3 5 6 15
组数 20 12 10 4
教师:谁来说说,你是怎样算每组人数和组数的?
抽几名学生说出自己的计算方法。
教师:从这个表中你发现了什么规律?
反馈:总人数60人没变,每组人数和组数的乘积是一定的;每组的人数在扩大,组数反而缩小……
(2)游览的第一天晚上,导游写了一篇情况总结,要把它存入电脑。
表4打一篇稿子
每分打字(个) 120 100 75 50
所需时间(分) 25 30 40 60
教师:必须先算出哪个量?为什么?学生独立计算,然后集体订正。
(3)第二天,导游将带领这批游客,行一段路程。
表5行一段路程
已行的路程(km) 1 2 3 4
剩下的路程(km) 19 18 17 16
填这个表时,你是怎样想的?集体订正。
表6行一段路程
路程(km) 12 20 24 36
时间(时) 3 5 6 9
集体订正。
2.分类区别,概括意义
(1)教师:请同学们把这6张表进行分类,你会怎么分?为什么这样分?带着这个问题,请同学们分组讨论。
教师巡视,听取各小组意见,加强指导。
(2)汇报交流
反馈1:表1,6分一类,表2,3,4,5分一类。
反馈2:表1,6分一类,表2,3,4分一类,表5单独分成一类。
教师:为什么这样分类?
引导学生说出:表1,6成正比例分一类;不成正比例的'表2,3,4它们的乘积一定,分成一类;表5是和一定,单独分成一类。
教师:现在我们一起来找出表2,3,4的共同特征。
学生1:每个表中的两种量都相关联。(板书:相关联)
学生2:一种量变化另一种量也随着变化。
学生3:从变化规律上看,表2中,人数越多,每人分得的个数越少,人数越少,每人分得的个数越多。
学生4:表3中,每组的人数扩大,组数反而缩小;表4中,每分打字的个数越少,所需要的时间反而越多……
教师简单概括:一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。两种量的变化方向正好相反。(板书:反)
学生5:表中两种量相对应的两个数的乘积是一定的。(板书:积)
正比例是一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数;而表2,3,4中,是一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。
(3)概括得出反比例的意义
教师根据学生的回答,引导学生概括得出:
两种相关联的量。
一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。
两种量相对应的两个数的乘积是一定的。
这是你们自己总结概括出来的结论,那么,你能给它们取个名字吗?
(揭示课题:反比例的意义)
像这样的两种量,叫做成反比例的量,它们的关系叫做反比例关系。
4.举例
抽生说一说生活中还有哪些成反比例的量。
学生1:路程一定,所行的时间与速
5.区分
表5中,一段路程20km一定时,已行的路程和剩下的路程成比例吗?为什么?
引导学生明确:虽然这也是两种相关联的量,但是它们的变化规律是增加或减少相同的数,而不是扩大或缩小相同的倍数;它们的和一定,而不是商一定或积一定。所以,它们不成比例。
三、直观操作,加深理解
1、完成第60页课堂活动1题
教师:请同学们看第1题的要求。哪位同学愿意说说你看了题目后的想法?
2、完成第60页课堂活动2题
3、完成第61页课堂活动3题
四、巩固练习,深化认识
练习十三1-3题,主要抓住正比例的本质属性“商一定”,反比例的本质属性“积一定”,要求学生独立完成,再集体订正。
五、课堂总结
今天,我们一起学习了什么?你有什么收获?
比与比例教学设计5
教学内容: 按比例分配
教学目标:
1、使学生理解按比例分配的意义。
2、掌握按比例分配应用题的特征及解题方法。
3、培养学生应用所学知识解决实际问题的能力。
教学重点:
掌握按比例分配应用题的特征及解题方法。
教学难点:
按比例分配应用题的实际应用。
教学过程:
一、复习引入
1、填空
已知六年级1班男生人数和女生人数的比是:3:2。
(1)男生人数是女生人数的( )
(2)女生人数是男生人数的( ),女生人数和男生人数的比是( )
(3)男生人数占全班人数的( ),男生人数和全班人数的比是( )
(4)全班人数是男生人数的( ),全班人数和男生人数的比是( )
(5)女生人数占全班人数的( ),女生人数和全班人数的比是( )
(6)全班人数是女生人数的( ),全班人数和女生人数的比是( )
2、口答应用题
六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?
口答:100÷2=50(平方米)
提问:这是一道分配问题,分谁?(100平方米)
怎么分?(平均分)
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?
这样分还是平均分吗?
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题。(板书:分配)
二、讲授新课
1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”
2、提问:分谁?(100平方米)怎么分?(按3 :2分)
求的是什么?(求二年级1班的保洁区是多少平方米?六年级1班的保洁区是多少平方米?)
3、思考:由“如果按3 :2分配”这句话你可以联想到什么?
(1)六年级的保洁区面积是二年级的3/2倍
(2)二年级的保洁区面积是六年级的2/3
(3)六年级的保洁区面积占总面积的3/5
(4)二年级的保洁区面积占总面积的2/5
… …
小组汇报结果
4、尝试解答:用你学过的知识解答例题,并说一说怎么想的?
方法一、3+2=5 100÷5=20(平方米)
20×3=60(平方米) 20×2=40(平方米)
方法二、3+2=5 100× 3/5=60(平方米)
100× 2/5=40(平方米)
方法三、100÷(1+2/3 )=60(平方米)
60× 2/3=40(平方米)或100-60=40(平方米)
方法四、100÷(1+3/2 )=40(平方米)
40× 3/2=60(平方米)或100-40=60(平方米)
5、比较思路:这几种方法中,你认为哪种方法好?为什么?
(第二种,思路简捷,计算简便)说说第二种方法的思路?
①求出总份数
②各部分数占总份数的几分之几?
③按照求一个数的几分之几是多少的方法解答。
6、这道题做得对不对呢?我们怎么检验?
①两个班级的面积相加,是否等于原来的总面积。
②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2
7、练习
一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3 :2。两种作物各播种多少公顷?
8、教学例3学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(1)讨论:这道题与前面所做的题有什么区别?
分配什么?按照什么来分?
怎样计算各班栽的棵数占总棵数的几分之几?
(2)学生独立解题
①三个班的总人数:47+45+48=140(人)
②一班应栽的棵数:280× 47/140=94(棵)
③二班应栽的棵数:280×45/140 =90(棵)
④三班应栽的棵数:280× 48/140=96(棵)
答:一班、二班、三班各应栽94棵、90棵、96棵。
9、小结:观察我们今天学习的两个例题有什么共同特点?
(已知总数量、各部分量的比,求各部分量)
怎么解答?
(先求总份数,各部分量占总数量的几分之几,最后求各部分量)
我们把具备上述特点,用这种特定方法解答的分配问题叫做“按比例分配”应用题,
板书(补充课题):按比例分谁?怎么分?
板书:把一个数量按照一定的比来进行分配。
三、巩固练习
1、六年级(2)班共有42人,男、女人数的比是3:4,男、女生各有多少人?
2、一个三角形三条边的长度比是3 :5 :4。这个三角形的周长是36厘米,三条边的长度分别是多少厘米?
(1)还是按比例分配问题吗?(2)如果是四个数的连比你还会解答吗?
3、一个长方形周长是20厘米,长与宽的比是7 :3,求长与宽各是多少厘米?
7+3=10 20×7/10=14(厘米) 20×3/10=6(厘米)
4、思考:平均分是不是按比例分配的应用题?按照几比几分配的?
四、课堂小结
今天我们学习了什么新知识?这种应用题有什么特点?应该怎样解答?
五、课后作业
练习十三 2、3、4、6
反思:
一、挖掘教材的趣味性、现实性,激发学生学习兴趣
“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。” 也就是说,当数学和儿童的现实生活密切结合时,数学才是活的,富有生命力的,才能激发儿童学习数学的兴趣。“我班的保洁区面积如何分配”这种贴近学生生活又有一定挑战性的实际例题,不仅能调动学生学习的积极性,而且能培养学生解决实际问题的能力。而且这种学生熟悉的生活素材演绎的.问题情境,能使他们真正体验到数学不是枯燥空洞的,不是高深莫测的,数学就在自己身边,是实实在在的。
二、挖掘教材的开放性、挑战性,激励学生创新
现行教材是课程改革过程中的过渡性教材,其中绝大部分的数学问题都是必要条件的问题,探索性、思考性和现实性的数学教材显得比较薄弱,教学中,需要教师补充一些具有开放性、挑战性的学习材料,适当让学生接触一些开放性的问题,培养学生的创新意识。开放性学习材料,除了引进有多余条件或条件不充分的问题,还要逐步引进在解决问题的方式、方法上以及答案上开放的问题,留给学生充分的思维空间和选择余地,激励学生去发现、去创新,来弥补教材不足
“按“3 :2分配”你读懂了什么?”这种开放的问题情境,给学生创造了自由发展的更大空间,满足学生的数学学习需求,能使他们真正体验到数学不是枯燥空洞的。再次验证了只有学生积极投入的课堂,才是真正充满生机和活力的课堂。
三、挖掘教材的问题性、情境性,培养学生多角度、个性化解决问题
教材呈现的方式是教材内容的表现形式,也是课堂教学教与学的载体,而同样的教学内容,如果用不同的呈现方式,就会产生不同的教学效果。为取得更好的教学效果,需要我们教师在呈现教材时,为学生创设一种良好的思维情境。一个好的问题情境,会使学生产生困惑和好奇心,能迅速地把学生的注意力吸引到教学活动中,使学生产生浓厚的学习兴趣和强烈的求知欲,从而使学生自觉、兴奋地投入到加深练习中,学习和探求新知识的教学活动中。同样是5:2的条件变换另一个条件,就能解决更多不同的问题,“还能怎样变换呢?”的悬念,这种诱惑力,激发了学生探求和解决问题的浓厚兴趣,将学生自然地带进了新知的探究中。这个例子再次告诉我们:小学数学教学中,教师要重视为教材创设问题情境,让学生在情境的引导下,积极主动探索和追求,来获取知识,发展能力,培养情感,从而让我们的“教材”成为我们学生真正喜欢的“学材”。
比与比例教学设计6
教学内容:比例尺知识与技能:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,能根据比例尺求出图上距离或实际距离。
情感态度与价值观:学会用比例尺知识解决问题,培养学生解决实际问题的能力。
教学重点、难点:理解比例尺的含义,能根据比例尺求出图上距离或实际距离。
教学过程:
一、导入(略)
二、探索新知
1、教学比例尺的意义
(1)、教师讲解:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们给它起一个名字叫做“比例尺”。(板书)
(2)、教师指导学生看教科书,让学生说出它们的比例尺各是多少,表示什么意思。
(3)、教师指出:比例尺与一般的尺不同,这是一个比,不应带计量单位。
2、线段比例尺与数值比例尺的改写。出示例1:把教材第49页线段比例尺改写数值比例尺。
(1)、说一说方法。
(2)、改写图上距离:实际距离=1㎝:50㎞=1㎝:5000000㎝ =1:5000000
3、教学根据比例尺求图上距离或实际距离。教学例2出示例2,指名读题,并说出题目已知什么,要求什么。教师板书解答过程
解:设地铁1号线的'实际距离为Xcm。 10:x=1:500000 X=500000×10 X=5000000 5000000㎝=50㎞巩固练习。做第52页的“做一做”。指名做,集体订正。
三、布置作业
完成《练习册》第19页的练习。
比与比例教学设计7
教学内容:
义务教育课程标准实验教科书数学六年级下册P43“练一练”和练习十的1~4题
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质。
3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐。
教学重点:
理解并掌握比例的基本性质。
教学难点:
探究发现比例的基本性质。
设计理念:
本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。
教学步骤教师活动学生活动
一、复习引新
导入新课
1、找找比比:
(判断下面的比,哪些能组成比例?把组成的比例写出来。)
3:518:300.4:0.21.8:0.9
5/8:1/47.5:32:89:27
学生独立完成,重点说说判断过程。
2、今天我们继续研究比例的有关知识。
学生练习
学生回顾判断两个比能否组成比例的方法
二、认识比例
探索规律1、认识比例各部分的名称
(1)介绍“项”:组成比例的四个数,叫做比例的项。
(2)3:5=18:30学生尝试起名。
师介绍:比例的`两项叫做比例的外项,中间的两项叫做比例的内项。
3:5=18:30
内项
外项
(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?
出示:3/5=18/30
(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
2、教学例4
(1)理解题意,信息搜索:
提问:你能根据图中的数据写出比例吗?
(2)、学生写不同比例:
引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。
引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?
(3)、学生探索规律
学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的积。)
(4)、写比例,验证规律:
是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。
(5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。
4、练习:“试一试”判断能否组成比例。
出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。
提问:2.6:1.8和0.5:0.25能组成比例吗?根据比例的基本性质,能判断两个比能不能组成比例吗?
学生练习:找出比例中的内项和外项
6:5=36:30
4:7=21:49
学生自主表达,图中有哪些数据信息?
学生独立思考,再小组交流
学生练习:如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成()
学生分析哪两个数是外项,哪两个数是内项。
比较理解比例的基本性质
学生思考后归纳:判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。
三、巩固练习
拓展提高
1、做“练一练”
使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。
2、在()里填上合适的数。
5:3=():6
4:()=():5
3、做练习十第1、2题学生尝试练习后交流讨论
先让学生尝试填写,再交流明确思考方法。
四、全课小结
总结反馈通过今天的学习,你有哪些收获?
把你发现规律的方法介绍给朋友、亲人。
五、课堂作业练习十3、4题
比与比例教学设计8
教学内容:教科书第43页例4,“试一试”,“练一练”和练习十的1~4题
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质。
3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐
教学重点:
理解并掌握比例的基本性质。
教学难点:
探究发现比例的基本性质。
教学准备:多媒体
教学过程:
一、导入
1、找找比比:
(判断下面的比,哪些能组成比例?把组成的比例写出来。)
3:518:300.4:0.21.8:0.9
5/8:1/47.5:32:89:27
学生独立完成,重点说说判断过程。
2、今天我们继续研究比例的有关知识。
二、新授
1、认识比例各部分的.名称
(1)介绍“项”:组成比例的四个数,叫做比例的项。
(2)3:5=18:30学生尝试起名。
师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。
3:5=18:30
内项
外项
(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?
出示:3/5=18/30
(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
2、教学例4
(1)理解题意,信息搜索:
提问:你能根据图中的数据写出比例吗?
(2)、学生写不同比例:
引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。
引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?
(3)、学生探索规律
学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的积。)
(4)、写比例,验证规律:
是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。
(5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。
4、练习:“试一试”判断能否组成比例。
出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。
提问:2.6:1.8和0.5:0.25能组成比例吗?根据比例的基本性质,能判断两个比
能不能组成比例吗?
三、巩固练习
1、做“练一练”
使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。
2、在()里填上合适的数。
5:3=():64:()=():5
3、做练习十第1、2题
四、小结
通过今天的学习,你有哪些收获?
交流
五、作业
完成《练习与测试》相关作业
比与比例教学设计9
教学目标:
1、知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。
2、过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。
3、情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。
教学重点:
理解比例的意义,探究比例的基本性质。
教学难点:
探究比例的基本性质和应用意义,会判断两个比能否组成比例。
教学过程:
一、创设情境,引入新课
同学们,五星红旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?
1、出示三幅场景图(见教材第40页主题图)
2、提问,你们知道每一幅图中国旗的长和宽是多少吗?(出示课件)
3谈话:在制作国旗的尺寸的过程中也存在有趣的`比。同学们可以算一算这三幅国旗的长和宽之比,并求出比值。
4、汇报,教师依次出示
二、引导探究,明确意义
(一)比例的意义
(1)观察这三组数据,你有什么发现?
(2)看三组数据,能否从中选出两个比组成等式呢?
(3)学生汇报,教师任选其中的板书
(4)师:肯定学生的回答后指出,像这样的等式我们还可以继续写下去。这样两个比相等,我们就可以说这两个比可以组成比例。(出示)这就是比例的意义也是我们今天所要学习的一个重要内容。
(5)引导学生再次理解意义并强调,两个比相等,并让学生说说什么是比例?
(6)试写比例的分数形式。
2、根据意义,判断比例
下面哪组中的两个比可以组成比例?把组成的比例写出来。
(1)学生独立完成。
(2)指名汇报。
(3)师:20:5和1:4为什么不能组成比例?那么你能想办法给20:5找个朋友组成比例吗?想一想,这样的朋友能找几个?你认为找到朋友的共同特点是什么?也就是说要符合什么条件?
小结后强调指出,判断两个比能否组成比例,关键是看它们的比值是否相等。
(二)比例的基本性质
师:我们知道比中两个数分别叫做比的前项和后项。今天我们学习的比例中的四个数也有自己的名字,你们知道它们分别叫什么吗?(和学生介绍内项和外项)。
(1)写出一组比例,让学生指出各部分的名称。
(2)如果把比例写成分数的形式,你能找出它的内项和外项吗?
生独立指出比例的内项和外项。
1、活动探究总结性质
谈话:比例表示两个比相等的式子,就像除法有商不变的性质一样,比例也有它特有的性质,会是什么呢?我们可以怎样研究?
(1)请你试着写出一些比例:
(2)问题:观察比例式,两个外项与两个内项之间有什么关系?想想、写写、算算,看你有什么发现?(可以提示学生分别算出两个外项和两个内项的和,差,积,商,看看有没有一定的规律)
(3)学生探究,教师巡视,收集资源。
(4)探究:你发现了什么?怎么发现的?
(5)验证:有了这样的发现之后,你有什么问题呢?
(6)可以得出什么?(比例的性质)
(7)提问:如果把比例写成分数的形式,比例的基本性质会出现什么形式呢?
2、运用性质
(1)提问:判断比例是否成立,你是根据什么判断的?有几个方法?
(2)出示一些练习,判断哪一组中的两个比可以组成比例?
三、归纳总结,交流收获
1、本节课学习了什么?
比与比例教学设计10
教学要求:
使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。
进一步提高解决简单实际问题的能力。
教学过程:
提出本课复习题
基本概念的复习
什么叫两种相关联的量?
下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?
什么样的两种量成正比例关系?什么样的两种量成反比例关系?
成正比例关系的量与成反比例关系的量有什么异同点?
应用练习
完成教材97页的“做一做”。
第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。
巩固练习
完成教材99页第6~7题。
全课总结(略)
教学目标:
使学生进上步理解和掌握比和比例的意义与性质。
区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。
教学过程:
讲述本课复习课题并板书
基本概念的复习
比和比例的意义与性质。
什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?
比和分数、除法有什么联系?
说说比的基本性质的比例的基本性质?
比的基本性质与比例的基本性质各有什么用处?
看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?
完成教材95的“做一做”。
结合第3题让学生说说什么叫做解比例?根据是什么?
示比值和化简比。
独立完成教材96页上的题目。
说说求比值与化简比的区别?
(求比值是根据比的'意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。
看书中的表,总结方法。
完成教材96页的“做一做”
比例尺
问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。
2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?
比例尺除写成数字化形式处,还可怎样表示?
完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)
练习巩固
完成教材十九页第1~4题。
全课总结(略)
比与比例教学设计11
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
3、通过自主学习,让学生经历探究的过程,体验成功的快乐。
教学重点:
理解并掌握比例的基本性质。
教学难点:
引导观察,自主探究发现比例的基本性质
设计理念:
本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。
教学过程:
一、 从知识的矛盾冲突中导入并引入。
1)3:8=9:( ) 0.5:( )=5:17
制造冲突,也为后面的思考题做理论铺垫,顺便起到引入课题,探索性质后回应开头的知识,也起到一定的教育作用。(请勇敢的同学配合老师)
师:某某你出生的时间哪一年哪一月哪一日?(根据学生的回报板书两次分子分母上下易位,同为比例的外项)
你还想知道教师内谁的生日,请他告诉你.(板书一次,做一个内项,那么括号应该怎样填呢)今天学习了比例的基本性质我们就可以迅速的填出了。(板书:比例的基本性质)
二、 探索发现新知。
1.引用练习中的3:8=9:24 为例子,比例中的四个数叫什么名字呢?两端的两项叫做什么,中间的`两项叫做什么?(自学课本)
学生回报,师完成板书:
(注意板书的时候教师的手势要指明确到位)
2、练习:请指出下列比例的两个外项和内项各是多少?
80:2=200:5 6:10=9:15 1/2:1/3=6:4 0.2:2.5=4:50
2.4:1.6=60:40
3、这么多的比例,每个比例的两个外项和两个内项之间存在有什么共同的特点么?可以说的具体一些。
带着问题小组内展开讨论。(教师可以参与当中若干组的活动)时间2分钟。
4、小组汇报初步形成共识:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(多找几个小组发表意见)
回到板书例题验证:两个外项的积是:3×24=72
两个内项的积是:8 ×9=72
5、拿出自己任意找的5个比例,验证是否存在相同的特点。(请学生在展台展示自己的5个比例,并说明外项和内项的积情况)2明,如果出现不相等的,要观察反例,说明两个比组不成比例。
6、完成板书:在比例里,两个外项的积等于两个内项的积
如果把比例写成分数的形式呢,以板书的例子,写成分数的形式,引入等号两边的分子和分母交叉相乘,所得的积相等。
三、 基本练习。
1. 应用比例的基本性质,判断下面两个比是否能组成比例。
(1)6:3和8:5 (2) 1∶5和0.8∶4
(3)1/3:1/4和12∶9 (4)1.2:3/和4/5:5
(注意学生语言叙述的规范性:如1)两个外项的积是6×3=18
两个内项的积是3×8=24,18≠24,所以不能组成比例)
2、在括号里填上适当的数
(1)12:3=():5 (2)():1/3=1/4:1/6
(3)0.2:0.6=6:() (4)4:3=80:()
3、用5、3、4、8这四个数组比例,看看你能组几个?为什么?
4、把5、3、4、8这四个数换掉其中的一个,组成比例。
4、在例一个比中,两个外项的积互为倒数,其中的一个内项是4/5,另一个内项是()。
5、回顾矛盾冲突题目:9解决因为两个外项乘积是1,所以两个外项乘积是1,另一个数就是那个已知数据的倒数。
四、全课总结:
谈一谈通过这节课的学习你有哪些收获?(质疑,并完成课题总结),提出预习任务,(那么利用比的基本性质如和求比例中的未知数呢,请自觉预习课本35页的例题2和3)
比与比例教学设计12
教学目标
1.使学生理解正比例的意义.
2.能根据正比例的意义判断两种量是不是成正比例.
3.培养学生的抽象概括能力和分析判断能力.
教学重点
使学生理解正比例的意义.
教学难点
引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的'数的比值一定,从而概括出正比例关系的概念.
教学过程
一、复习准备
口答(课件演示:成正比例的量)
1.已知路程和时间,怎样求速度?
2.已知总价和数量,怎样求单价?
3.已知工作总量和工作时间,怎样求工作效率?
二、新授教学
(一)导入新课
这些都是我们已经学过的常见的数量关系.这节课,我们继续研究这些数量关系中的一些特征.
(二)教学例1.(课件演示:成正比例的量)
1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米
2.出示下表,并根据上述内容填表.
比与比例教学设计13
教学内容:
教科书第59页例5以及相关练习题。
教学目标:
1、使学生能正确判断题中涉及的量是否成正比例关系。
2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。
3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。
4、在成功解决生活中的实际问题中体会数学的价值。
教学重点:
利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。
教学难点:
正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。
教具准备:
小黑板
教学过程:
一、复习铺垫,激发兴趣。
1、填空并说明理由。
(1)速度一定,路程和时间成( )比例。
(2)单价一定,总价与数量成( )比例。
(3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。
【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】
3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?
生1:把旗杆放下量。
生2:爬上去量。
生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)
师:相信通过这一节课的学习,你一定会找到解决的方法的。
【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】
二、揭示课题、探索新知。
1、小黑板出示例5
张大妈:我们家上个月用了8吨水,水费是12.8元。
李奶奶:我们家用了10吨水,上个月的水费是多少钱?
思考:题中告诉了我们哪些信息?要解决什么问题?
师:你能利用数学知识帮李奶奶算出上个月的水费吗?
(1) 学生自己解答。
(2) 交流解答方法,并说说自己想法。
算式是:12.8÷8×10
=1.6×10
=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)
(也可以先求出用水量的倍数关系再求总价。)
10÷8×12.8
=1.25×12.8
=16(元)
【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的'检验,帮助学生在后面的学习中构建知识结构。】
师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)
(3)小黑板出示以下问题让学生思考和讨论:
1)题目中相关联的两种量是( )和( ) ,说说变化情况。
2)( )一定,( )和( )成( )比例关系。
3)用关系式表示是( )
(4)集体交流、反馈
板书: 水费 用水吨数
12.8元 8吨
?元 10吨
水费:用水吨数 = 每吨水的价钱(一定)
师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(5)根据正比例的意义列出比例式(方程):
学生独立完成,教师巡视。
反馈学生解题情况。
8
12.8
10
χ
解:设李奶奶家上个月的水费是χ元。
12.8 :8 =χ:10 或 =
8χ=12.8×10 8χ= 12.8×10
χ=128÷8 χ=128÷8
χ= 16 χ= 16
答:李奶奶家上个月的水费是16元。
【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。】
(6)将答案代入到比例式中进行检验。
你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?
生交流,汇报。
2、变式练习。
刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:
张大妈:我们家上个月用了8吨水,水费是12.8元。王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?
(1)比较一下改编后的题和例5有什么联系和区别?
(2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)
(3)集体订正,学生说一说你是怎么想的?
3、概括总结
师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的思考过程是怎样的?
学生讨论交流,汇报。
师总结:
1、分析找出题目中相关联的两种量。
2、判断他们是否是正比例关系。
3、根据正比例的意义列出比例。
4、最后解比例。
5、检验作答。
【设计意图:归纳解题的策略,有助于提高学生解决问题的能力。】
三、巩固练习,形成技能。
1、解决课前提出的问题。小明在解决这一问题时,采集到了下面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗
师提醒:同一时间、同一地点的身高和影长成正比例。
学生读题后,先思考以下三个问题。
① 题中已知哪两种相关联的量?
②它们成什么比例关系?你是根据什么判断的?
② 你能列出等式吗?
生独立完成,并汇报解答过程。
2、教科书P60“做一做”。
生独立解答。
【设计意图:通过练习的巩固,提高学生解决问题的能力。同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。】
四、全课总结
通过今天的学习,你有什么收获?
五、布置作业
练习九第3、5题。
板书设计:
用比例解决问题
水费 用水吨数 解:设李奶奶家上个月的水费是χ元。
12.8元 8吨
?元 10吨 12.8 :8 =χ:10
8χ= 12.8×10
水费:用水吨数 = 每吨水的价钱(一定)
χ=128÷8
χ= 16
答:李奶奶家上个月的水费是16元
比与比例教学设计14
教学内容
第23~24页例1、例2以及相应的“做一做”,练习五第1~4题、
教学目的
1、让学生掌握用比例解应用题的方法、
2、让学生感受生活中的数学,体验数学的应用价值,培养学生运用所学知识解决实际问题的能力、
教学重难点
利用已学的正比例的意义,通过自己探索,掌握解答正比例应用题的方法。
教学过程
一、复习
1、判断下面各题中的两个量成什么比例关系?
1)、速度一定,路程和时间(正)
2)、三角形的面积一定,底和高(反)
3)、一个为0的自然数与它的倒数(反)
4)、Y=3XY与X(正)
5)、每块砖的面积一定,砖的块数和总面积(正)
二、引入
一辆汽车从甲地开往乙地行驶路程和时间表:
路程(千米)70140350……
时间(小时)125……
(1)、观察提问:
1)、表中相关的量是哪两种量,汽车行的路程和时间成什么比例?
为什么?师从表中圈出140350
25
师:将其中一个数当作未知数能编一道就用题吗?
2)、学生试编
如学生编题时没有“照这样速度”或“照这样计算”,师提醒:读题的人怎样知道速度一定?
3)、生汇报所编之题,(选其中一题)师出示例1
师:你们自编的题目会用以前学过的方法解答吗:
学生试做;汇报:(师板书)
生:归一140÷2×5
倍比140÷(5÷2)
分数140÷2/5或140×5/2
方程140÷2=X÷5
师:大家想出了这么多合理的解答方法,真能干,我们已经学过了比例的'意义、解比例的知识,能不能利用比例的这些知识来解答这道题呢?
今天我们就探讨如何用比例解答应用题(板书课题)
二、新知
1、学生分组讨论,尝试用所学的比例知识来解答应用题。
2、讨论后,请两组学生上来写写他们的列式。
解:设两地之间的距离有X千米
140/2=X/5
师:请讲讲你们的解题思路
学生:根据“照这样计算”可以看出速度一定,也就是路程/时间=速度(一定)既比值一定。所以,路程和时间成正比,根据比例的意义列出等式。
师:140/2表示什么?X/5表示什么?
3、学生总结一下解比例应用题的步骤:
1)、读题,找出条件和问题。
2)、找准变量和定量,判断两种相关联的量成什么比例。
3)、设未知数。
4)、根据比例意义列出等式并解答。
齐读解题步骤,师:这几步中,最关键的是哪步?
4、出示刚才学生编的另一题:
一辆汽车从甲地开往乙地2小时行驶140千米,已知公路长350千米,需要行驶多少小时。用比例解答该怎样解答。
师:这道题的定量变了吗?路程和时间成什么比例关系?
生试独立完成。集体订正。请学生讲讲解题思路。
三,巩固练习:
1、补充条件,使它成为一道完整的应用题,并用比例解答。
一台织布机织布,4小时织布80千米,照这样式计算()一共可以织多少千米?
学生1:补充“3小时”后,全体学生试做。
学生2:补充“再织3小时”学生试做。
请不同做法的学生板书,并说说解题思路。
生1:间接设生2:直接设
解设3小时织布X米解设一共可织布X米
80/4=X/4+380/4=X/3
X=60X=140
60+80=140
比与比例教学设计15
教学内容:
北师大版小学数学第十二册第二单元第30—31页。
教学目标:
1让学生在实践活动中体验生活中需要比例尺。
2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。
3运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
4学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
教学重点:正确理解比例尺的含义。
教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
教学准备:多媒体
教学过程:
一、独立探究、合作生成
教师:请同学们在自己纸上画出长9米,宽7米的教室地面来。
学生1:(有学生会发出质疑)哪有那么大的本子?不够画怎么办?
学生2:可以利用前面所学的知识————图形的放缩,把教室的长和宽都缩小一定的倍数在纸上表示出来。
教师:你的想法很对,跟笑笑同学的想法一样(用课件出示第31页笑笑家的平面图),在这幅图上你们发现了什么新问题?
学生:在图的右下方有“比例尺1:100”
教师:观察真仔细!比例尺1:100是什么意思?
1学生讨论。
2学生汇报:
学生1:图上1厘米长的线段表示实际100厘米。
学生2:图上距离是实际距离的1/100。
学生2:表示实际距离是图上距离的100倍。
3揭示比例尺的意义。
教师:比例尺是表示图上距离与实际距离的比,这就是今天要学习的新知识——比例尺(板书课题)
二、自然生成、进行应用
1教师补充板书:图上距离∶实际距离=比例尺
图上距离/实际距离=比例尺
2教师:你们在什么地方看到过比例尺?
学生1:在中国地图上。
学生:在世界地图上。
学生:在房屋设计图上。
……
2教师:比例尺1∶300是什么意思?(注重意思的多样化)
学生交流(略)
3认识比例尺特征:
(1)课件出示中国地图的比例尺、世界地图的比例尺……
教师:通过观察,你们发现比例尺有什么特点?
学生:地图上的比例尺一般写成前项是1的比
4、运用知识,尝试解决问题:
教师:现在请大家量一量平面图中笑笑卧室的长是()厘米,宽是()厘米。
算一算笑笑卧室实际的长是()米,宽是()米,面积是()平方米。
(1)学生独立完成。
(2)汇报算法
学生1:先量出卧室的'长5厘米,实际长=5厘米×100=500厘米=5米
学生2:量出卧室的长4厘米,实际宽=4厘米×100=400厘米=4米
学生3:卧室的实际面积是5×4=20平方米
三、解决问题、巩固提高
1、算出笑笑家的总面积是多少平方米?
2、在父母卧室南墙正中有一扇宽为2米的窗户,在平面图上标出来。
3按比例尺是1:200,画出我们教室的平面图。
四、总结深化、活化知识
这节课大家有哪些收获?
五、研究性作业
1完成第30页的思考题。
2、试画自己家庭的住宅平面图,并计算一下每个房间的面积。
【比与比例教学设计】相关文章:
比例的意义教学设计07-26
《比例尺》教学设计08-25
《按比例分配》教学设计06-09
正比例教学设计12-29
反比例函数教学设计03-07
《比例的意义和基本性质》教学设计03-20
《比例的意义》教学反思08-30
比例的意义教学反思09-06
《比例尺》教学反思09-22