- 相关推荐
【必备】平行四边形教案四篇
作为一位杰出的老师,总不可避免地需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。我们该怎么去写教案呢?以下是小编收集整理的平行四边形教案4篇,欢迎阅读与收藏。
平行四边形教案 篇1
教材分析:
平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。
几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。
教学目标:
1、通过剪、拼、摆等活动,让学生主动探究平行四边形的面积计算公式。
2、掌握平行四边形面积计算公式并能解决实际问题。
3、培养学生初步的空间观念。
4、培养学生积极参与、团结合作、主动探索的精神。
教学重点:平行四边形面积的计算。
教学难点:平行四边形面积公式的推导过程。
教学准备:学具。
教学过程:
一、质疑引新
1、显示长方形图
长方形的面积怎样求?
2、电脑展示长方形变形为平行四边形。
原来的长方形变成了什么图形?它的面积怎样求呢?
二、引导探究
(一)、铺垫导引
出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。
小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?
实验、操作(小组合作):把后两幅图转化成长方形
电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。
集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)
讨论:
剪拼前后,图形的形状变了没有?面积有没有变?
做了这个实验你想到了什么?
(二)、实验探索
刚才用剪、移、拼的方法解决一个求图形面积的问题,用这样的方法,你能不能探索出平行四边形面积的计算方法呢?
学生实验操作
1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。
2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。
3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。
结合学生发言提问:
你在平行四边形上沿哪条线段剪开的?
这条线段实际上是平行四边形的什么?
在学生回答的基础上小结:沿着平行四边形底边上的.任意一条高,都可以把一个平行四边形剪拼成一个长方形。
(三)总结归纳
问:
1、平行四边形剪拼成长方形后,两种图形的面积有什么关系?
2、剪拼成的长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)
得出:平行四边形面积=底×高
追问:要求平行四边形的面积,必须知道哪两个条件?
用字母表示公式
学生自学P44~P45有关内容
集体交流:S=a×h
S=a·h
S=ah
教师强调乘号的简写与略写的方法
三、深化认识
1、验证公式
学生利用公式计算P43表格平行四边形的面积,看结果是否和实验结果一样。
2、应用公式
a) 例题
学生列式解答,并说出列式的根据。
b) 做练一练
四、巩固练习
1、求下列图形的面积是多少?
底5厘米,高3。5厘米 底6厘米,高2厘米
2、计算下面图形的面积哪个算式正确?(单位:米)
3×8 3×6 4×8 6×8 3×4 4×6
3、求平行四边形的高是多少?
面积:56平方厘米
底:8厘米
4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
以小组为单位探讨多种想法
五、总结全课(电脑显示、学生口答)
把一个平行四边形沿着高剪成两部分,通过( )法,可以把这两部分拼成一个( )形。这个长方形的( )等于平行四边形的( ),这个长方形的( )等于平行四边形的( ),因为长方形的面积=长×宽,所以平行四边形的面积等于( ), 用字母表示平行四边形的面积公式( )。
平行四边形教案 篇2
一、内容和内容解析
1.内容
平行四边形对角线的性质.
2.内容解析
这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会.平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用.这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.是中心对称图形的具体化,是以后学习平行四边形判定的重要依据.
教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算.
基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用.
二、目标和目标解析
1.目标
(1)探究并掌握平行四边形对角线互相平分的性质.
(2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.
2.目标解析
达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想.
达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证.
三、教学问题诊断分析
本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容.例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算.这些问题常常需要运用勾股定理求平行四边形的高或底.这些问题比较综合,需要灵活运用所学的有关知识加以解决.
基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算.
四、教学过程设计
引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质.
1. 引入要素 探究性质
问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?
师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答.
设计意图:回顾研究研究平行四边形边、角这两个要素的'性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备.
问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?
师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分.
你能证明上述猜想吗?
教师操作投影仪,提出下面问题:
图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证.
学生合作学习,交流自己的思路,并讨论不同的验证思路.
教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB,
△ABD≌△BCD,△ADC≌△CBA.有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明.
师生归纳整理:
定理:平行四边形的对角线互相平分.
我们证明了平行四边形具有以下性质:
(1)平行四边形的对边相等;
(2)平行四边形的对角相等;
(3)平行四边形的对角线互相平分.
设计意图:应用三角形全等的知识,猜想并验证所要学习的内容.
2.例题解析 应用所学
问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.
师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程.
变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F.求证:OE=OF.图中还在哪些相等的量?
设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”. 让学生理解平行四边形对角线互相平分的性质的应用价值.
3.课堂练习,巩固深化
(1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________.
(2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?
设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力.
4.反思与小结
(1)我们学习了平行四边形的哪些性质?
(2)结合本节的学习,谈谈研究平行四边形性质的思想方法.
(3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题?
5.布置作业
教科书P49页习题18.1 第3题;
教科书第51页第14题.
平行四边形教案 篇3
教学建议
1。重点 平行四边形的判定定理
重点分析 平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点.
2。难点 灵活运用判定定理证明平行四边形
难点分析 平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.
3。关于平行四边形判定的教法建议
本节研究平行四边形的判定方法,重点是四个判定定理,这也是本章的重点之一.
1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索平行四边形的判定定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.
2.素质教育的`主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.
3.平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.
教学设计示例1
[教学目标]
通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力,数学教案-平行四边形的判定。
[教学过程]
一、准备题系列
1。复习旧知识:前面我们学习了平行四边形的性质,哪位同学能叙述一下。(答对者记分,答错的另点同学补充)
2。小实验:有一块平行四喧形的玻璃片,假如不小心碰碎了解部分(如图所示),同学们想想看,有没有办法把原来的平行四边形重新画出来?
(让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查,初中数学教案《数学教案-平行四边形的判定》。对个别差生稍加点拨,最后请学生回答画图方法) 学生可能想到的画法有:⑴ 分别过A、C作DC、DA的平行线,两平行线相交于B; ⑵过C作DA的平行线,再在这平行线上截取CB=DA,连结BA;⑶ 分别以A、C为圆心,以DC、DA的长为半径画弧,两弧相交于B,连结AB、CB。
还有一种一法,学生不易想到,即由平行四边形对角线的特性,引导学生得出 连结AC,取AC的中点O,再连结DO,并延长DO至B,使BO=DO,连结AB、CD。
二、引入新课
上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。生答后师指出这就是今天所要不得 研究的问题“平行四边形的判定”(板书课题)。
三、尝试议练
1。要判定我们刚才画出的四边形是不是平行四边形,应当加以证明。第一种画法,由平行四边形的定义可知,它是平行四边形(定义可作性质也可作判定)。
2。现在我们来看看第二种画法,这就是平行四边形判定定理一(翻开课本看它的文字叙述)。请想想,一组对边平行且相等的四边形究竟是不是平行四边形呢?这里已知是什么?求证是什么?请写出。
自学课本上的证明过程,看后提问:这个证明题不作辅助线行不行?为什么?(因为要证平行线,一般要证两角相等,或互补,要证两角相等,一般要证全等三角形,而这里没有三角形,要连一对角线才有三角形)
3。再看第三种画法,在两组对边分别相等的情况下是不是平行四边形?教师写出已知、求证,请两位学生上台证明,其余在课堂练习本上做。(注意考虑要不要添辅助线)
完成证明后提问哪些学生是用判定定理一落千丈证明的?哪些是用定义证明的?(解题后思考)
四、变式练习
1。再看看第四种画法,可知,已各条件是四边形的对角线互相一平分,这种情况下它是不平行四边形?
阅读课本上的判定定理之后,要求学生思考用什么方法求证最简便?(应该用判定定理一) 2。变式题
⑴两组对角分别相等的四边形是不是平行四边形?为什么?(练习第1题)(口述证明,不要示书面证明)(问要不要添辅助线?)
⑵一组对边平行,一组对角相等的四边形是不是平行四边形?(教师补充)
⑶一组对边相等,一组对家相等及一组对边相等,另一组对边相等的四边形是不是平行四边形?(引导学生在草稿纸上画图思考,然后回答不是平行四边形。因为边角不能证全等三角形)
⑷自学课本例1思考:此例证明中,什么地方用了平行四边形的“性质”?什么地方用“判定”定理?
观察下图:
平行四边形ABCD中,<A、<C的平行线分别交对边于E和F,求证:AE=FC(怎样证最简便?)
五、课堂小结
1。今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。
2。这些平行四边形的判定方法中最基本的是哪一条?
3。平行四边形的判定定理和性质有什么关系?同一个证明题中应注意什么地方用判定,什么地方性质?
平行四边形教案 篇4
一、教学目标:
1、理解和掌握平行四边形的面积计算公式。
2、会计算平行四边形的面积。
二、教学重点:
理解公式并正确计算平行四边形的面积。
三、教学难点:
理解平行四边形的面积公式的推导过程。
四、学具准备:平行四边形纸
五、教学过程:
(一)、板书课题,揭示目标
同学们请看大屏幕,这两个花坛哪一个大呢?比较它们的大小得知道它们的面积,我们只学过长方形的面积,哪位同学能说一下?(教师板书)
平行四边形的面积我们还不会计算,(出示)小精灵提示我们先用数方格的方法试一试。(切换)
一个方格代表12,不满一格的都按半格计算。
谁来数一数两个图形的面积各是多少?(出示)
平行四边形的底和高各是多少?(出示)
长方形的长和宽各是多少?(出示)
(出示)你发现了什么?
同学们今天这节课我们就来学习“平行四边形的面积”(板书课题)
本节课我们的学习目标是:“1、理解和掌握平行四边形的面积计算公式。 2、会计算平行四边形的面积。”(出示)
要想完成学习目标,还要靠同学们认真自学,请看自学指导。
(二)出示自学指导
1、想一想,如何把平行四边形剪拼成长方形?以小组为单位剪一剪,拼一拼。
2、观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的`长方形与原来的平行四边形的面积有什么关系?想一想平行四边形的面积应该怎样计算?
(6分钟后,比一比谁能正确计算出平行四边形的面积。相信你一定行!)
现在开始自学,注意看书的姿势,用剪刀时要注意安全!
(三)、学生自学
1、学生看书自学,教师巡视,督促每个学生都能认真自学。
2、检测学生自学效果
师:自学时间到,谁来演示一下你是怎样把平行四边形剪拼成长方形的?(抽生到前面演示)
观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?
想一想平行四边形的面积应该怎样计算?(师板书面积公式)
教师小结(展示动画):
同时教师口述:通过割补的方法,我们可清楚地看到,任何一个平行四边形都可以转化为长方形,而且长方形的长和宽恰好等于平行四边形的底和高。所以,平行四边形的面积=底×高。
(边口述,边板书。)教师讲述:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成:S=a×h,简写成:S=ah。(板书)
下面就用你所学的知识去解决一下实际问题。
出示检测题
出示:平行四边形花坛的底是 6,高是 4,它的面积是多少?
抽2名学生上台板演,其他学生写在练习本上,教师巡视,搜集学生检测中出现的错误。
(四)、后教
1、学生自由更正
在学生完成检测后,看黑板上学生的板演,注意做题的步骤,如发现错误和有不同见解的同学,上台更正。
2、讨论归纳
问:做题的步骤是什么?第一步写什么?其中的a表示什么?h表示什么?s呢?
板书:写公式——代入数——计算(单位)——写答话。
(五)、当堂训练
1、
2、
(六)、全课总结
这节课,你有什么收获?
六、板书设计
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
写公式——代入数——计算(单位)——写答话
5
【平行四边形教案】相关文章:
认识平行四边形说课稿12-21
平行四边形的判定教学反思06-14
平行四边形的面积教学反思06-22
平行四边形面积的教学反思04-23
平行四边形和梯形教学设计03-11
《平行四边形面积的计算》教学设计06-03
人教版平行四边形的面积的教学设计12-16
平行四边形的面积公式教学设计11-05
人教版平行四边形的面积教学设计12-08