《圆锥体积》教学反思

时间:2022-03-27 09:38:45 教学反思 我要投稿

《圆锥体积》教学反思

  作为一位到岗不久的教师,课堂教学是重要的任务之一,对学到的教学新方法,我们可以记录在教学反思中,教学反思应该怎么写才好呢?下面是小编整理的《圆锥体积》教学反思,仅供参考,希望能够帮助到大家。

《圆锥体积》教学反思

《圆锥体积》教学反思1

  在教学“圆锥的体积”这一课时,我没有用传统的讲解演示法去组织教学,而是采用探究性学习的方法组织学生的学习活动。围绕怎样能让学生积极参与探究活动的问题,我思索了好一阵子,曾作过这样的设计:圆锥的体积大小与什么有关?当学生回答与圆锥的底面积和高有关时,教师接着问:已知圆锥的底面积和高怎样计算圆锥的体积?这时,估计有学生很快说出计算公式,因为有学生已看过书,这是班级学生的实际情况,此时教师该怎么办?不让这些学生回答,这是对他们的不尊重,可能会打消他们学习的积极性,如果让他们回答,势必会影响班上绝大多数学生探索的积极性,因为他们原本是不知道这个结论的,现在结论已给出,又何必苦苦进行探索?

  我反复地思考着,预想着学生中可能会出现的种种情况……,于是我决定提问:你能想什么办法自己去发现圆锥体积的计算公式?这一问题的提出,不在公式本身,而在于发现公式的思考方法上,我想,小学生往往只关心结果,不注意思考方法和过程,既使看过书的学生,大多也未曾思考为什么会是这样之类的问题,这问题能将学生的思维聚焦在探究的方法上,而重视对探究方法的思考,正是我们的数学教学应该加强的,问题一提出,学生就置身于问题情景中,兴趣盎然地投入探究活动之中。

  实践证明,整个学习过程,是一个积极探究的过程,学生始终是主动的探索者,从教学效果来看,学生不仅主动地建构计算圆锥体积的`新知,而且思考力得到有效的培养。

  课后反思这节课,我想探究性学习决不是让学生盲目的试误,否则将会出现形似探究,实际上还是讲解灌输的教学。我认为,进行探究性学习的关键是:教师要将自己假设成学生,了解学生思维的实际情况,善于将书本上结论性知识转变成学生乐于探究的问题,从而燃起学生探究的欲望,使学生以饱满的情态积极投入到探索性学习活动中,教师还必须引导学生关注探究的方法,给予探究方法的指导,让学生在探究中学会探究,提高主动获取知识的能力。

《圆锥体积》教学反思2

  教学过程

  一、复习旧知,铺垫孕伏

  1、(电脑出示一个透明的圆锥)仔细观察,圆锥有哪些主要特征呢?

  2、复习高的概念。

  (1)什么叫圆锥的高?

  (2)请一位同学上来指出用橡皮泥制作的圆锥体模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)

  评析:

  圆锥特征的复习简明扼要。圆锥高的复习颇具新意,通过动手操作,从而使抽象的高具体化、形象化。

  二、创设情境,引发猜想

  1、 电脑呈现出动画情境(伴图配音)。

  夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去“动物超市”购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

  2、 引导学生围绕问题展开讨论。

  问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

  问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

  问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)

  过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了“圆锥的体积“后,就会弄明白这个问题。

  评析:

  数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。

  三、自主探索,操作实验

  下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。

  出示思考题:

  (1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

  (2)你们的小组是怎样进行实验的?

  1、小组实验。

  (1)学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。

  (2)同组的学生做完实验后,进行交流,并把实验结果写在长条黑板上。

  2、大组交流。

  (1)组织收集信息。

  学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在插式黑板上:

  ①圆柱的体积正好是圆锥体积的3倍。

  ②圆柱的体积不是圆锥体积的3倍。

  ③圆柱的体积正好是圆锥体积的8倍。

  ④圆柱的体积正好是圆锥体积的5倍。

  ⑤圆柱的体积是等底等高的圆锥体积的3倍。

  ⑥圆锥的体积是等底等高的圆柱体积的1/3。

  ……

  (2)引导整理信息。

  指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)

  (3)参与处理信息。

  围绕3倍关系的情况讨论:

  ①请这几个小组同学说出他们是怎样通过实验得出这一结论的?

  ②哪个小组得出的结论更加科学合理一些?

  圆锥的体积是等底等高的圆柱体积的1/3。

  (突出等底等高,并请他们拿出实验用的.器材,自己比划、验证这个结论。)

  ③引导学生自主修正另外两个结论。

  3、诱导反思。

  (1)为什么有两个小组实验的结果不是3倍关系呢?

  (2)把一个空心的圆锥慢慢按入等底等高且装满水的圆柱形容器里,剩下水的体积是多少?这时和圆柱体积有什么关系?

  4、推导公式。

  尝试运用信息推导圆锥的体积计算公式。

  (1)这里sh表示什么?为什么要乘1/3?

  (2)要求圆锥体积需要知道哪两个条件?

  5、问题解决。

  童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高)之后播放狐狸拿着圆锥形雪糕离去的画面。

  评析:

  圆锥体积公式的推导,教师敢于大胆放手,让学生自主探索,经历“再创造”的过程。学生在教师的引导下,通过观察、实验、猜测、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式。特别是数学交流体现得很充分,有学生与教师之间的交流、学生与学生之间的交流以及小组或大组的多向交流,这种交流是立体、交叉型的,它能催化学生的意义建构。在有的小组实验失败后,引导学生在反思中不断进行自我调控,在调控中增强了体验的力度,有效培养了学生的元认知能力。

  四、运用公式,解决问题

  1、教学例1。一个圆锥形的零件,底面积是19平万厘米,高是12厘米。这个零件的体积是多少?

  2、学生尝试行算,指名板演,集体订正。

  3、引导小结:不要漏乘1/3;计算时,能约分时要先约分。

  五、巩固练习,拓展深化(略)

  六、质疑问难,总结升华

  通过这节课的学习,你们探索到了什么?怎样推导出圆锥体积公式的?

  回到童话情节。我们发现三个圆锥形的雪糕换一个与它等底等高的圆柱形雪糕公平合理,如果狐狸只用一个圆锥形的雪糕和小白兔交换,而不使小白兔吃亏,那么圆锥形的雪糕应该是什么样的?配合用课件演示、

  总评

  1、摸得清,考虑周。教师能深入了解学生,对学生的原有认知水平、知识技能、情感态度,即学习起点能力分析得比较清楚。设计教案时,能充分估计教学过程的复杂性,考虑学生在课堂上可能发生的“意外情况”,以顺应学生的学习过程,力求构建一种非直线型的教学路径,这样的教学设计思路值得提倡。

  2、理念新,设计巧。教师能利用《数学课程标准(实验稿)》的理念处理教材,加工教材。如本节课结合了现实中的具体情景,创设了一个学生喜闻乐见的童话情境——狐狸和小白兔换雪糕,并把这一故事情节贯穿整节课的始终。教学中尽量做到一波未平,一波又起,整节课的结构浑然一体。教师遵循了“现实题材——数学问题——数学模型——数学方法——解决问题”的过程来设计教学,引导学生亲身经历将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。

  3、重建构,促发展。建构主义学习观认为,学习是学习者主动建构内部心理表征的过程,不同的学习者可能以不同的方式来建构对事物的理解,产生不同的建构结果,本节课在实验探索中,学生通过小组合作,发现出等底等高的圆柱体积是圆锥体积的3倍,有的同学会持反对意见,这样刚刚建立起来的平衡旋即被打破,当大家发现他们的实验器材不等底等高时,又能建立起新的平衡,学生在“平衡——不平衡——新的平衡”中,认知结构得到了丰富和发展。多样化的数学活动,如实验、交流、反思、推理、问题解决使学生的意义建构有了坚实的基础。学生的情感在认知的过程中也得到了和谐的发展,他们在相互交往中加深了理解、沟通和包容,品尝到了探索成功的喜悦。

《圆锥体积》教学反思3

  优点:

  教学“圆锥的体积”一课,重点是体积公式的推导。公式导出后,如何进行计算应用。我让每个学生都经历“猜想估计———设计实验验证———发现算法”的自主探究学习的过程,适当的引导学生根据自己的设想探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的.体积公式——V=1/3Sh,这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。

  不足:

  1、学生对公式推导过程理解有困难,对圆锥体体积计算公式中“1/3”的理解不深入,虽然学生的学习用具是固定的,但是他们所采用的方式却是不一样的,学生有着各自不同的思维方式。

  2、在计算的过程中,运用公式计算时往往丢失“1/3”,单位名称用错,体积单位用面积单位。

  再教设想:

  1.为了避免单位名称的错误,可在课前复习中设计单位换算的填空题,辨析题等。例如:1立方米=——立方分米=——立方厘米,100平方厘米=1立方分米。

  2.在学生利用学具理解公式的推导过程时,应放手让学动手动脑自己解决,但动手之前一定要把任务布置清楚,让孩子们自己发现圆锥与圆柱体各部分之间的关系,从而推导出圆锥的体积公式。

《圆锥体积》教学反思4

  圆锥的体积是在学生掌握了圆锥的认识和圆柱的体积计算的基础上教学的,是小学几何初步知识教学的重要内容。本课的.设计主要做到了以下几点:

  1.大胆猜测,培养猜测意识。假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,在教学设计中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,让学生大胆猜想它们的体积可能会有什么样的关系,这样设计不仅仅能够培养学生的猜测意识,更重要的是能够充分调动所有学生的积极性,激起大家的探究愿望。

  2.操作验证,培养科学的实验观。数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式。教学设计中,注重引导学生通过自主探究实验得出结论,让学生明确圆锥的体积是与这个圆锥等底等高的圆柱体积Sh的三分之一,从而总结出圆锥体积的计算公式V=三分之一Sh。

《圆锥体积》教学反思5

  圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。

  好的地方:

  1.让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我让学生在课前自己先制作出等底等高的圆柱和圆锥型容器教具,让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,由此通过公式可以得出:

  V圆锥=1/3圆柱=1/3Sh(知道底面积和高)

  =1/3πr2h(知道半径和高)

  =1/3π(d*2)2h(知道直径和高)

  =1/3π(C*2*π)2h(知道周长和高)

  2.加强学生的实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我让学生自己制作学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的'来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。

  不足之处:

  没有在制作学具时候,制作出等底不等高的圆柱和圆锥型容器教具,然后挑一组学生实验,得不出圆锥的体积是与它等底等高圆柱体积的三分之一的结论。所以,缺乏对比性,如果加入这个教具的话,更能让学生深知等底等高的重要性。

《圆锥体积》教学反思6

  我认为这节课的设计与教学具有下面的特点:

  一、在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒水实验,而是通过师生交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望。学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然。

  二、在实验时,让学生小组合作亲自动手实验,以实验要求为主线,既动手操作,又动脑思考,努力探索圆锥体制的计算方法。这样的`学习,学生学得活,记得牢,既发挥教师的主导作用,又体现了学生的主体地位。学生在学习过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

  但是,这节课学生是在教师预设引导中探究。为什么要学的疑念,怎样学的策略,可能还不够突显,与学生生活联系还不是很紧密的。学生的问题意识不强,都有待探究。

《圆锥体积》教学反思7

  在评教评学中我所讲的内容是《圆锥的体积》,是学生在掌握了圆锥的认识和圆柱的体积的基础上进行的。教学时我先让学生回顾上一节学过的内容,再让学生大胆的猜想圆锥的体积公式。然后通过实验操作来发现圆锥与等底等高的圆柱之间的`关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,或圆柱的体积是等底等高圆锥体积的3倍。

  并能运用这个关系计算圆锥的体积。本节课我重点让学生动手实验探究充分发挥学生小组合作的精神,大胆放手让学生动手操作,实验,并记录下整个实验过程和发现的结果。在汇报时,由于准备的材料不同,范耀君同学的小组和郝子龙小组发生了争论,也是本课要解决的重点问题,我及时抓住这一个环节,引导学生得出必须在等底等高的条件下,从而推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。

  在感知事物,获取感性知识中,操作与思维紧密结合,加深对圆锥及体积的认识。遗憾的是学生动手实验时,占据了较长的时间,以至练习的时间不多,没有达到充分的巩固。在以后的教学中要合理的安排和调控好课堂,使学生有充分发挥的空间。

《圆锥体积》教学反思8

  圆锥的体积是在学生掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。学生感到非常简单易懂,因此学起来并不感到困难。但教学过后,仍感到有许多不尽人意之处,当然,也有许多收获。

  新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

  在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

  一、 收获:

  1、探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。

  (1) 、一节好的课,在教学时要层次清楚,步步深入,重点突出。

  在教学“圆锥的体积”时,我首先用实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。

  (2) 、一节好的课,应注意激发学生的求知欲。

  新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的.教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

  (3) 、一节好的课,要有全体学生的积极参与,突出学生的主体作用。

  由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

  二、 不足:

  1、 许多学生在计算过程中常忘记除以3,需要加强训练。

  2、 实验教材数量有限,只能起到演示作用,学生成为被动的观看者,不能实现人人参与操作探究。

  (1)。这些实验设计在教学实践中也暴露出许多不足:这些实验设计都需要借助一定的中介,而根据小学生的认知特点,他们在比较体积关系时首先想到的是进行体积的直接对比,所以实验设计不符合学生思维的真实水平。

  (2)。实验教材具有现成性,学习用具具有一定的实际限制,使学生探索思考的空间较小,不利于学生思维的充分发展。

《圆锥体积》教学反思9

  课前我安排学生收集、整理生活中应用圆锥的实例和信息资料。教学时我首先列举生活中大量的圆锥实物,在学生观察思考这些物体形状的共同特点,并从实物中抽象出几何形体的.基础上引入。再引导学生对照模型和图形,互说圆锥的特征,加深对圆锥的认识。感受几何知识在生活中的应用,同时提高学生运用数学为生活服务的意识和能力。

  在本课中,我无论从问题的引入,圆锥概念的定义,高的寻找及测量方法的探索,我都给予学生充足的时间进行尝试、研究和讨论,让学生以不同的方式进行合作、交流,这样的过程,不仅提供了学生自主学习的机会,也提高了学生自主参与学习的意识和信心,大家积极发言,争先操作,参与率很高。

  我积极地创造机会让学生自己去学习或者去探究问题。通过看一看,摸一摸,比一比,指一指,说一说,猜一猜等问题情境,让学生亲身感受数学,在找中学,在测中学,在思中学,培养学生动手操作能力、直观思维和抽象思维能力,使数学课堂教学,动起来,活起来,让学生在做中学,使数学课堂焕发出生命活力。

《圆锥体积》教学反思10

  实践出真知,我觉得这句话讲得非常的好。对于学生的学习,我觉得也是这样。让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。特别是在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。在教学圆锥的体积时,我感悟特深刻。

  以前教学圆锥的体积后,学生在实际运用公式时容易出错误的地方还是和往届一样,圆锥的体积=等底等高圆柱体积的三分之一,这个三分之一,在计算的时候经常出现遗漏。

  怎样让学生自己探究出圆锥的体积公式,并且时时记住那个容易被人遗忘的`三分之一呢?我这次把学习的主动权交给了学生,让每个学生都经历提出猜测--设计实验--动手操作--得出公式的自主探究学习的过程,我让学生拿出自己的学具等底等高的圆柱和圆锥,走出课堂,深入实践,到操场上去装沙子,到水池边去装水,看几个圆锥的体积才能把圆柱装满。在我适当的引导下,让学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。教学中我感到学生真正地成为了学习的主人,我没有牵着学生走,只是为他们创设了一个猜想圆锥体积方法的情境,让学生在猜测中找到验证的方法,并且通过动手操作验证自己的猜测。最后得出圆锥体积的计算方法,激发了他们主动探究的欲望。

  推导公式时,我没有代替学生的操作,始终只以组织者、引导者与合作者的身份参与其中,使学生与学生之间,教师与学生之间互动起来,在这种形式下,学生运用独立思考、合作讨论、动手操作等多种方式进行了探索。另外,为了突出等底、等高这个条件的重要性,我巧置陷阱,我还特意安排了一组等底不等高,一组不等底也不等高的圆柱和圆锥,结果学生的实验结论和其他组的不一致,这时候就出现了争论,这时,我时机引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。相信今天通过同学们自己的动手体验,对圆锥的体积计算方法印象深刻,只有自己经历了才会牢牢记住!

《圆锥体积》教学反思11

  圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。

  成功之处:

  1.让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我首先通过给学生提供两组不同的学具:一组是等底等高的圆柱和圆锥,另一组是等底不等高的圆柱和圆锥。让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,而在等底不等高的圆柱和圆锥中,则不存在这样的关系,圆锥的体积就不是与它等底不等高圆柱体积的三分之一,由此通过公式可以得出:V圆锥=1/3圆柱

  =1/3Sh(知道底面积和高)

  =1/3πr2h(知道半径和高)

  =1/3π(d*2)2h(知道直径和高)

  =1/3π(c*2*π)2h(知道周长和高)

  2.加强学生的实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我提供的是两组不同的学具,目的是让学生通过自己的'亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。

  不足之处:

  由于课前把制作的U盘带回家,未带回来,所以导致课上无法通过多媒体课件的形式,把动手操作的完整过程给学生进行展示。

  再教设计:

  上课前的一点一丝疏漏都要力求避免,课前准备真的是对于教师来说至关重要,缺少哪一环都会在课堂上留下遗憾。

《圆锥体积》教学反思12

  以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一,思维出现激烈的.碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果。

  在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的。

  教学不仅仅是告诉,更需要经历。真正关注学生学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验,这样,我们的课堂才是学生成长和成功的场所。

《圆锥体积》教学反思13

以前教学圆锥的体积时,由于教具的制作非常麻烦,多是先由教师演示等底等高情况下的圆柱体积的三分之一正好是圆锥的体积,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但收到的效果不佳,计算圆锥的体积时容易忘掉乘。学生对等底等高这一重要条件掌握并不牢固,理解很模糊。在本次课中,新课一开始,我就让学生观察,根据学习体积的经验,先判断四个圆锥的体积大小,引导学生猜测圆锥的体积和它的什么有关,学生联系到了圆柱的体积,都能说出圆锥的.体积跟它的底面积和高有关系,在猜想中激发学生的学习兴趣,使学生明白学习目标。

  为了让学生理解等底等高是判断圆锥的体积是圆柱体积的三分之一的前提条件,同时为了节约教学时间,我设计了这样的教学片断:让学生思考,圆锥与学过哪个立体图形的关系最近?为什么?学生很容易找到圆柱,接着我又拿出几个不同的圆柱,问:考考你们的眼力,选择哪个来研究这个圆锥的体积比较好?将学生选的圆柱进行验证,发现与圆锥是等底等高,告诉学生在选择实验材料时要尽量选择有些相同条件的,这样实验时可以少走弯路,实验的结果准确些,在这个过程中加深了对等底等高这个条件的理解。这时,让学生进行小组合做,实验探究,经历一番观察、发现、合作、创新的过程,得出圆锥体积等于和它等底等高圆柱体积的三分之一。这样让学生置身于有目的的实践中,增加对实验条件的选择及信息的归纳。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是优化实验过程所产生的效果。

  在小组合作学习中,为了增强实效性,避免走形式,在课前,我引导学生制作等底等高的一组圆柱和圆锥,使每个学生都能真切的参与实验、参与到探究中去,让他们以这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

  通过本节课的教学,我意识到在平时的课堂教学中,我们要善于利以学生认识发展规律为依托:发现问题,提出问题探究解决问题,探究解决问题得出结论,实际应用使学生在认识实践再认识、再实践中理解运用知识。在教学环节中以学生探究为基础引导学生在探究中总结规律,并运用规律解决实际问题,激发学生探究的兴趣感受到数学的应用性,解决问题的乐趣,逐步提高学生探究知识应用知识解决实际问题的能力。

  本节课的教学中比较遗憾的时,在制作课件时考虑不周全,几个圆锥的相关数据不准确,比例不合适,对学生的学习造成了不必要的麻烦,影响了学生的判断结果,这些看似细节的环节,却反映了在备课时的粗心大意,对学生也会产生不良的影响,今后要注意,时刻记住:细节决定成功!

《圆锥体积》教学反思14

  一、教材说明:

  《圆锥的体积》一课的教学,是在掌握了圆锥的认识和圆柱的体积的基础上进行的。多年的教学,让我学习和累计了很多的教学经验。教学时我先生活故事导入激发学生的学习兴趣,再让学生大胆的猜想圆锥的体积公式,然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。

  二、三维目标解析:

  教学目标是:

  1、初步掌握圆锥体积的计算公式,并能运用公式正确地进行计算。2、通过圆锥体积公式的推导,培养学生动手操作与小组协作的能力。

  目标解析:

  1、情感的发展

  小学数学教学中的情感发展主要包括学生对数学、数学学习活动的兴趣;自信心和意志力,学习数学的态度与学习习惯。本节课的教学,摆脱了传统“灌”的教学,从引导学生发现问题、探索问题,学生在发现中激起兴趣,从探索中寻找快乐,然后又应用知识解决问题。学生经历了一个探索性的学习过程,不知不觉地掌握了知识,发展了能力,增进了对数学的情感。学习变成了一个赏心悦目的活动。

  2、思想的发展

  小学数学教材中,含有大量思想教育因素,是对学生进行教育的良好素材。教师在教学数学知识的同时,要注意发挥教材本身思想教育功能,不失时机地、潜移默化地渗透思想教育活动是儿童认识数学的重要方式。新课改提倡学生的自主活动,把数学学习的主动权交给学生,鼓励每个学生积极参与教学活动,在教学中创设丰富多彩的活动情境,让学生亲自实践,大胆探索。

  3、通过练习,形成技能。

  三、教法设计:

  1、让学生经历发现、提问、解决问题的全过程

  复习有关圆柱体积知识后,教师出示一堆煤:将这堆煤倒在地上,会变成什么形状情境导入。教师再演示削铅笔:把一支圆柱形铅笔的笔头刨成圆锥形,让学生观察,猜测圆锥的体积和什么有关,由于课件很形象直观,学生很快联系到了圆柱的体积,而且很容易想到应该是几分之几的关系。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的'验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

  2、让学生在现实情境中体验和理解数学

  在实验前让学生先猜想,再通过小组合作演示实验、交流得出结论,亲自去验证自己的猜想是否正确,既调动了学生的实际操作能力,

《圆锥体积》教学反思15

  最近教学了《圆柱与圆锥》,内容包括圆柱的表面积、圆柱的体积、圆锥的体积等,并参与实践活动。从教材编写的层面上讲力图体现以下特点:

  1.结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的过程,体会“点、线、面、体”之间的联系教材的第一个活动体现的内容是“由平面图形经过旋转形成几何体”,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的原因。教材呈现了几个生活中的具体情境,鼓励学生进行观察,激活学生的生活经验,使学生经历“点动成线”“线动成面”“面动成体”的过程。在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展空间观念。教材还提供了若干由面旋转成体的练习。

  2.重视操作与思考、想象相结合,发展学生的空间观念操作与思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材重视学生操作活动的安排,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如“圆柱的表面积”的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形,并呈现了两种操作的方法:一种是把圆柱形纸盒剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱形。再如本单元的最后专门安排了一个“用长方形纸卷圆柱形”的实践活动,先让学生用两张完全一样的长方形纸,一张横着卷成一个圆柱形,另一张竖着卷成一个圆柱形,研究两个圆柱体积的大小;然后组织学生将两张完全一样的长方形纸裁开,把变化形状后的纸再卷成圆柱形,研究圆柱体积的变化,引导学生发现规律,深化对圆柱表面积、体积的认识,并体会变量之间的关系。

  3.引导学生经历圆柱和圆锥体积计算方法的探索过程,体会类比等数学思想方法类比是一种重要的数学思想方法,是合情推理时常用的方法。教材重视类比、转化等数学思想方法的渗透。在“圆柱的体积”教学时,教材引导学生经历“类比猜想—验证说明”的探索过程。由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算

  方法也可能是“底面积×高”。在形成猜想后,教材再引导学生“验证说明”自己的.猜想。在“圆锥的体积”教学时,教材继续渗透类比的思想,再次引导学生经历“类比猜想—验证说明”的探索过程。另外,教材还注意转化、化曲为直等思想方法的渗透,如在验证说明“圆柱的体积=底面积×高”时,引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。

  4.在解决实际问题中巩固所学知识,感受数学与生活的联系圆柱和圆锥的知识在生活中有着较为广泛的应用,教材在编排练习时,选择了来自于现实生活的问题,引导学生灵活运用所学知识解决问题。如学习“圆柱的表面积”时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的铁皮的面积、压路机压路的面积等,由于实际情形变化比较多,需要学生根据实际情况灵活地选择有关数据进行计算。在学习“圆柱和圆锥的体积”后,教材鼓励学生计算水桶的容积、圆木的体积、圆锥形小麦堆的体积、铅锤的质量等。这些实际问题的解决,将使学生巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。

  从教学层面上讲,我觉得要注意这么几点:

  1、让学生经历知识的生成,理解公式的由来。

  2、熟记相关公式和一些常见数据,提高计算的正确率和速度。

  3、注意知识的拓展应用,体现数学的应用价值,发展学生的思维能力。

【《圆锥体积》教学反思】相关文章:

《圆锥的体积》教学反思04-14

圆锥的体积教学反思05-12

《圆锥的体积》教学反思08-28

《圆锥的体积》数学教学反思05-22

《圆锥的体积》教学反思 15篇04-19

圆锥的体积教学设计01-21

圆锥体积教学设计05-24

六年级数学《圆锥的体积》教学反思05-13

体积教学反思12-01