《圆锥的体积》教学反思
作为一名到岗不久的人民教师,我们要有一流的课堂教学能力,我们可以把教学过程中的感悟记录在教学反思中,教学反思要怎么写呢?下面是小编整理的《圆锥的体积》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
《圆锥的体积》教学反思1
课前,我给每组学生准备一盆沙和等底等高的空心圆柱体、圆锥体各一个。课堂上组织学生4人一组,利用手中的学具一起来探索圆柱和圆锥体积之间的关系。
学生们有的将圆锥中装满沙倒入圆柱中;有的将圆柱中装满沙倒入圆锥中……很快推导出圆锥的体积公式。在交流中,学生经常把“等底等高”漏掉,作业时不注意“等底等高”条件,错误率也很高。
反思:教师为了让学生快速完成操作推导出公式,给学生准备学具,只让学生来体验得出结果的一部分操作。这样做截断了知识的本源,学生忽视了对“等底等高”这一重要条件的'认识,因而对发现的规律认识不全面,最终运用规律去解决新问题时也错误百出。其实,教师可以让学生准备“等底等高”的圆柱、圆锥;不等底不等高的圆柱、圆锥,这样4组来装沙操作。这样的探究具有很强的选择性、探索性和创造性,学生在不断地测量、比较、猜测、验证中发现“只有圆柱与圆锥等底等高”,圆锥的体积才是圆柱体积的1/3。
收获:①探究活动时,教师应避免探究问题开放中“材料过少”的现象;②探究的问题应该在材料准备上开放;③让学生在充足、具有比较性的实验操作材料的基础上达到全面探究的目的。
《圆锥的体积》教学反思2
圆锥的体积是在学生掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。学生感到非常简单易懂,因此学起来并不感到困难。但教学过后,仍感到有许多不尽人意之处,当然,也有许多收获。
新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。
一、 收获:
1、探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。
(1) 、一节好的课,在教学时要层次清楚,步步深入,重点突出。
在教学“圆锥的体积”时,我首先用实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的'过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。
(2) 、一节好的课,应注意激发学生的求知欲。
新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。
(3) 、一节好的课,要有全体学生的积极参与,突出学生的主体作用。
由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。
二、 不足:
1、 许多学生在计算过程中常忘记除以3,需要加强训练。
2、 实验教材数量有限,只能起到演示作用,学生成为被动的观看者,不能实现人人参与操作探究。
(1)。这些实验设计在教学实践中也暴露出许多不足:这些实验设计都需要借助一定的中介,而根据小学生的认知特点,他们在比较体积关系时首先想到的是进行体积的直接对比,所以实验设计不符合学生思维的真实水平。
(2)。实验教材具有现成性,学习用具具有一定的实际限制,使学生探索思考的空间较小,不利于学生思维的充分发展。
《圆锥的体积》教学反思3
在本课的教学中,我首先让学生猜想圆锥的体积可能与它的什么有关系,再来猜想圆锥的体积可能和什么立体图形的体积有关系,通过学生自主的实验操作,探究出圆锥和圆柱在等底等高情况下的倍数关系,再通过学生的讨论,推导出圆锥的体积公式,最后应用探索出的结论解决生活中的实际问题。
一、 让学生经历猜想—实验—验证—结论的实践探索的全过程。
新课程标准明确指出,数学学习内容应当“有利于学生主动地进行观察、试验、猜测、验证、推理与交流等教学活动”数学史上许多重大的发现都离不开猜想。著名科学家牛顿说过“没有大胆的猜想就做不出伟大的发现”所以,在课初,猜想圆锥的体积与他的什么有关系,再来猜想圆锥的体积和什么图形的体积有关系,然后通过学生的动手实践验证了自己的猜想,并应用新知解决了问题。这样,即向学生渗透“猜想---验证‘ 的数学思想,有极大的调动了学生的求知欲,使学生经历了知识形成的全过程,学会了怎样学习。
二、给学生一个“合作交流、自主探究”的空间。
新课程标准明确指出,有效地数学学习活动不能单纯的依耐模仿和与记忆,动手实践、资助探索与合作交流是学生学习数学的重要方式。书学者们课程,不但需要观察,还需要试验。有些知识单凭解说是无法让学生真正理解的,只有通过试验,才能深刻领悟其中的内在奥秘。
在探究圆锥体积计算方法的学习过程中,教师把动手的主动权交给了学生,让学生动手实践,自主探索,合作交流,主动地获取知识改变了一教师讲解、师范为主的.教学方式。学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。教师只是学习的组织者、引导者与合作者,是平等中的首席。在整个探究过程中,学生获得的不仅是数学知识,而且更多的是探究学习的科学方法,探究学习的喜悦。在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
三、让学生在学习中体验数学的应用价值
人人学有价值的数学,人人都能获得必要的数学,不同人在数学商获得不同的发展,这是新课程标准的基本理念。生活知识数学化,数学知识生活化,我们所学得只是最重要应用于生活实际。为了体现“学有用的数学”这一理念,教学中,我设计了买冰淇淋、奥运火炬、“神五”等与圆锥体积有关的问题,使得数学问题生活化、趣味化。课后,又设置了在边长4分米的正方体木料里笑一个最大圆锥的问题,教室里放置一个最大圆锥的问题,使得课堂知识回归生活,引发学生思考。这样,极大的激发了学生的求知欲望和探索精神,使得数学学习不再枯燥,,而变得更精彩。
《圆锥的体积》教学反思4
最近教学了《圆柱与圆锥》,内容包括圆柱的表面积、圆柱的体积、圆锥的体积等,并参与实践活动。从教材编写的层面上讲力图体现以下特点:
1.结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的过程,体会“点、线、面、体”之间的联系教材的第一个活动体现的内容是“由平面图形经过旋转形成几何体”,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的原因。教材呈现了几个生活中的具体情境,鼓励学生进行观察,激活学生的生活经验,使学生经历“点动成线”“线动成面”“面动成体”的过程。在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展空间观念。教材还提供了若干由面旋转成体的练习。
2.重视操作与思考、想象相结合,发展学生的空间观念操作与思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材重视学生操作活动的安排,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如“圆柱的表面积”的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形,并呈现了两种操作的方法:一种是把圆柱形纸盒剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱形。再如本单元的最后专门安排了一个“用长方形纸卷圆柱形”的实践活动,先让学生用两张完全一样的长方形纸,一张横着卷成一个圆柱形,另一张竖着卷成一个圆柱形,研究两个圆柱体积的大小;然后组织学生将两张完全一样的长方形纸裁开,把变化形状后的纸再卷成圆柱形,研究圆柱体积的变化,引导学生发现规律,深化对圆柱表面积、体积的认识,并体会变量之间的关系。
3.引导学生经历圆柱和圆锥体积计算方法的探索过程,体会类比等数学思想方法类比是一种重要的数学思想方法,是合情推理时常用的方法。教材重视类比、转化等数学思想方法的渗透。在“圆柱的体积”教学时,教材引导学生经历“类比猜想—验证说明”的探索过程。由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算
方法也可能是“底面积×高”。在形成猜想后,教材再引导学生“验证说明”自己的猜想。在“圆锥的体积”教学时,教材继续渗透类比的思想,再次引导学生经历“类比猜想—验证说明”的探索过程。另外,教材还注意转化、化曲为直等思想方法的渗透,如在验证说明“圆柱的体积=底面积×高”时,引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。
4.在解决实际问题中巩固所学知识,感受数学与生活的联系圆柱和圆锥的知识在生活中有着较为广泛的应用,教材在编排练习时,选择了来自于现实生活的问题,引导学生灵活运用所学知识解决问题。如学习“圆柱的表面积”时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的铁皮的面积、压路机压路的'面积等,由于实际情形变化比较多,需要学生根据实际情况灵活地选择有关数据进行计算。在学习“圆柱和圆锥的体积”后,教材鼓励学生计算水桶的容积、圆木的体积、圆锥形小麦堆的体积、铅锤的质量等。这些实际问题的解决,将使学生巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。
从教学层面上讲,我觉得要注意这么几点:
1、让学生经历知识的生成,理解公式的由来。
2、熟记相关公式和一些常见数据,提高计算的正确率和速度。
3、注意知识的拓展应用,体现数学的应用价值,发展学生的思维能力。
《圆锥的体积》教学反思5
1、通过课堂评价促进小组探究学习的有效性
我将班上同学分成了9个小组,在课堂开始前告诉同学们在今天的小组学习中会选出一个优秀小组,并且从合作,纪律,发现三个方面进行评价,组长安排组员活动 体现小组合作性,巩固了小组合作探究的实效性,活动时间结束时从纪律方面进行评价,有效的组织了教学,使学生的兴奋点得到有效控制,尽快投入到公式的推到 过程中,在推到过程中鼓励同学们表达自己的观点,从发现方面对学生进行评价提高学生的积极性。
2、层次清楚,步步深入,重点突出
在教学圆锥的体积时,我首先复习了圆柱的体积的计算过程,再用生活中的问题引入学习圆锥体积的必要性,调动了学生的积极性。然后要学生用自己的学具动 手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公 式解决生活中的实际问题,加深学生印象。
3、激发学生的求知欲
新课一开始,我就让学生比较两堆沙的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。
4、全体学生的积极参与,突出学生的主体作用
由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。
5、课堂教学后的改进
关于两堆沙的多少的比较课让学生有更多的发展空间,例如从价钱,重量等方面考虑,在这些都不知道的情况下才通过求体积的方法,事实上从价钱上来看更简单一些,要让学生有选择合适的方法解决问题的能力。
在操作活动过程中,指向性过于直接,在第二次教学中我做了一些新的尝试。简单的导入,我出示了一组圆柱和圆锥,先让学生猜一猜学生它们体积的关系,因为学 生都有预习,圆锥体积是圆柱体积的三分之一很快从学生口中脱出。那我们就来做个试验验证一下!我给六个小组分别准备了等底等高、等底不等高、等高 不等底、既不等底也不等高的圆柱和圆锥,当然,实验还没结束,学生中的问题就出来了,我们做的正好是三分之一、怎么回事?我们的是二分之一?, 我们的是四分之一是不是书上写错了?学生思维出现激烈的碰撞,这时我没有评判结果,适时让学生观察、对比、通过合作、讨论,等底等高这一 前提,这样让学生在看似混乱无序的实践中,增加对实验条件的`辨别,既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展,而不必苦口婆 心地强调等底等高,对三分之一的认识也深入学生之心,圆锥体积计算漏乘三分之一的错误将得到很好的纠正。而这些目标的达成完全是灵活机智地利 用错误这一资源,所产生的效果,这节教学虽没以前那么顺利,但我觉得今天的学生才真正掌握了知识。因为学生更需要经历知识形成的全过程。真正关注学生 学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验, 这样,我们的课堂才是学生成长和体验成功的乐园!
《圆锥的体积》教学反思6
这一节失败的课让我反思了很多,除了总结和练习,还找到了很多不足之处均待提高。
1.课堂提问没有给学生留下足够的思考空间。
如:你打算用什么方法测量这个圆锥的体积?问题提出后,我仅停顿了2秒,没有学生举手我就接着说我们解决一个未知问题通常会把它转化为已知问题,那么圆锥的体积可以转化为我们原来学过的哪个立体图形的体积呢?说完这句话,我就意识到,这个地方应该让学生充分的思考,充分的说一说方法,如果学生说不出,我再说这些话,学生可能会给我很多惊喜。
2.实验结束后,你想说什么?
学生经历了猜想、体验、探究、验证的过程,在实验的过程中肯定会发现很多问题、矛盾。实验结束后,学生应该有很多话要说。此时问一问,你想说什么?既给了学生一个思维提升的过程,又能顺利的总结出这节课的结论。
3.如何有效的调动起学生的积极性,让高年级的'学生也能积极回答问题?
这个问题,我曾经百思不得其解,总以为就是高年级学生的公开课比低年级的公开课难上,这节课后也豁然找到了原因:一是出在我平时的课堂上。由于平时上课总要照顾后进生,所以在回答问题时,往往不去叫举手的好学生,总去点不举手的后进生,公开课时也不由自主地这样做。但是这样做的后果就是导致,举手的同学本来就有些害怕,我还总不去叫他。不但打击了举手同学的积极性,还打消了其他同学举手的念头。另一个很重要的原因是缘于教师上课的心态。对着低年级学生上课,我们很容易放下姿态,去哄他们,有一点做的好、说的好了,教师就会给很高的评价。而且态度还和蔼可亲。但是对着六年级学生,就觉得他们是大孩子了。自己首先都没有用同样的态度去对待他们,又怎么能向他们要同样的课堂效果呢?
通过不断的反思自己,让我发现了很多自己的问题。这一节课,可以说是我从教以来对我打击最大的一节课,却又是让我收获最大的一节课。课堂上留下了很多遗憾,有机会真想再重新上一遍这节课。
《圆锥的体积》教学反思7
通过本节课的教学,我意识到在平时的课堂教学中,我们要善于利用以学生认识发展规律为依托 :发现问题,提出问题探究解决问题,探究解决问题得出结论,实际应用使学生在“认识—实践—再认识、再实践”中理解运用知识。反思教学过程,主要有以下几点体会:
一、观察引导
让学生观察用卷笔刀削铅笔,明白刚才那一截是圆柱体,现在这一截变成了圆锥体。启发学生:削成后的这一部分体积与原体积比较有无变化?学生回答是肯定的,削后体积变小了。变小了以后的圆锥体是原圆柱体的几分之几?也就是说圆锥体体积与圆柱体体积有什么联系?圆锥体体积公式如何推导?带着问题去看书。
二、巧置陷阱
学生看书后知道圆锥体体积等于等底等高圆柱体积的三分之一。但对“等底、等高”这个条件往往不注意。为了突出“等底、等高”这个条件的重要性,我巧置陷阱,让学生分组操作,(有一组的圆柱和圆锥体的容器不是等底等高的,有一组的圆柱和圆锥体的容器是等底等高的),去验证课本上的知识。学生进行倒水实验:用圆锥体容器盛满水倒入圆柱体容器。过了一会儿,一个小组倒了3次水,还没灌满;而另一小组的同学却大叫:“水溢出来了!”这是什么缘故呢?学生们议论纷纷。
三、柳暗花明
这时正是学生思维活动进入高潮时,我拿出等底等高的圆柱体和圆锥体两个容器,用圆锥体量水三次正好灌满圆柱体,引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。而在这样的过程中我放手让学生去想、去做,鼓励学生以多角度去思考问题。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。
四、归纳总结
刚才同学们发现圆锥体体积等于等底、等高圆柱体体积的,现在圆锥体体积公式如何推导?学生很容易得出:
v圆锥体=sh÷3
但在教学过程中我发现了几个值得我思考和改正的问题:
1、在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多。
2、有些学生在计算过程中常忘记除以3,需要加强练习。
3、对学生的操作关注不够到位。
采取的措施:
1、培养学生养成良好的学习习惯,做题时认真仔细。
2、上课要用心去感受学生课堂上出现的各种情况,使自己更有激情,把自己更好地融入到课堂教学中去。同时也会把时间更多的放在钻研教材上,把每一节课上得有声有色。
《圆锥的体积》教学反思
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的`重要方式。”因此,在教学圆锥体积计算时,一改以前教师演示或在教师指令下实验的做法;采取提供学生材料和机会,引导学生自主探究的学习方式。具体表现在:
(1)密切数学与现实的联系,富有儿童情趣。
学生从熟悉的经典历史故事《曹操称象》中,理解了“大象”转化为“石头”的等量代换的数学方法,渗透转化的方法,为新知识作好铺垫和准备。又从刨铅笔直观引入,引发学生大胆猜想,学生的主动性,探究性得到培养。实验中的米;最后,习题中又回归生活,延伸了课堂。
(2)致力于改变学生的学习方式。
在教学过程中,能够在学生已有的知识经验基础和动手操作上,经过学生自主探索与合作交流,解决了与生活经验密切联系,具有挑战性的问题。课堂中,启发学生提问,猜想,动手测量,注重了解决问题能力的培养,体验到了成功的快乐。
(3)学习过程中揭示了一般科学的研究方法。
提出问题——直觉猜想——实验探索——合作交流——实验验证——得出结论——实践运用。这为以后的探究学习提供了一个基本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、理想和方法,更发展了学生的反思意识、小组自我评价意识。
纵观本节课的设计,运用现代教学理论,以新课程的理念指导教学,较好的处理了主导和主体、知识和能力、过程和结论的关系,充分调动了学生的积极性,引导全体学生动脑、动手、动口参与学习的全过程。整节课教学目标明确,教学层次清楚。结构严谨,重点突出,取得了良好的教学效果。
《圆锥的体积》教学反思8
圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。
成功之处:
1.让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我首先通过给学生提供两组不同的学具:一组是等底等高的圆柱和圆锥,另一组是等底不等高的圆柱和圆锥。让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,而在等底不等高的圆柱和圆锥中,则不存在这样的关系,圆锥的体积就不是与它等底不等高圆柱体积的`三分之一,由此通过公式可以得出:V圆锥=1/3圆柱
=1/3Sh(知道底面积和高)
=1/3πr2h(知道半径和高)
=1/3π(d*2)2h(知道直径和高)
=1/3π(c*2*π)2h(知道周长和高)
2.加强学生的实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我提供的是两组不同的学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。
不足之处:
由于课前把制作的U盘带回家,未带回来,所以导致课上无法通过多媒体课件的形式,把动手操作的完整过程给学生进行展示。
再教设计:
上课前的一点一丝疏漏都要力求避免,课前准备真的是对于教师来说至关重要,缺少哪一环都会在课堂上留下遗憾。
《圆锥的体积》教学反思9
在本节课中,通过用排水法测量外形类似于圆锥的体积(比如铅锤)不但麻烦,而且有时还不能用(比如测量麦堆的体积),体会此方法具有一定的局限性而引入新课。从面上的相似性知道圆锥的体积可能与圆柱的`有关,然后经历大胆猜测、实验验证、分析实验结果,从而得出体积公式的过程。再利用适当的练习巩固公式而达到本节课的教学目的。本节课总体感觉很顺畅,学生思维活跃。在课堂上利用实物演示,较好地引导学生思考,总结出等底等高的圆柱与圆锥之间的关系,突出了重点,突破了难点。
《数学课程标准》明确指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念。课中让学生动手分别用圆锥和圆柱盛沙,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。同时,课堂教学注重让学生自主学习,合作探究,充分发挥了学生的学习主动性,也培养了学生的创新能力。
虽然本节课达到了教学目的,取得了不错的教学效果,但也存在一些不足,由于受条件限制,学具准备不够充分;课堂语言还不够简练;在学生汇报时,没有抓住生成;没有认真研究不等底不等高的体积关系等。在以后的教学过程中一定会注意这些问题,使自己不断地进步。
《圆锥的体积》教学反思10
(1)
让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。
就正如探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。同时,在操作与实践的过程中让一些学习困难的学生也有参与的兴趣,让他们也能感受数学学习的快乐,使他们懂得他们也可以通过玩掌握到数学的知识。
让每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。同时对于学习困难的学生该学习方法也是降低了他们对知识的掌握的难度。
出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。虽然学生的学习用具是固定的,但是他们所采用的方式却是不一样的。这也证明了学生是有着各自不同的思维方式的。
(2)
《圆锥》这节课,其教学目标是:1)、认识圆锥,了解圆锥的底面、侧面和高;2)、掌握圆锥高的测量方法;3)、圆锥体积公式的推导;4)、通过例一例二使学生会应用圆锥公式进行简单的计算。教学中,学生通过实际触摸,动手测量、探索推导等活动,前三个教学目标在轻松快乐的`氛围中顺利完成。在公式V锥=1/3sh=1/3r2h,应用这个环节,考虑到学生已经预习过例题,就把例二教学做了改动给出一圆锥形麦堆,底面直径是20分米,高是14分米,每立方米小麦重0.375千克,求这堆小麦重多少千克?让学生自主练习,本以为应用公式很快就能解决的一个问题,可学生算了好长时间还没有完成。原来我在改动数字时没有考虑到圆锥体积公式的1/3和3.14给出的直径和高与1/3都不能约分,使本应该巩固公式应用的目标辩词了复杂的小数计算,浪费了大量的时间,课后习题没有处理完就匆匆结束了这节课。课后反思数学既活又严谨,看似一个简单数字的出示也要付出周密的策划。一节简单流畅的好课,并不是随手拈来的,只要用心的去思考,统筹安排,关注到每个细节才能得到。
教学需要学习,教学更需要反思,在反思中进步,在反思中提高。
(3)
一节课下来,我静心思考,有以下几点反思:
1、一节好的课,在教学时要层次清楚,步步深入,重点突出。
在教学“圆锥的体积”时,我首先从实物图形讲解到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。
2、一节好的课,应注意激发学生的求知欲。
新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。
3、一节好的课,要有全体学生的积极参与,突出学生的主体作用。
由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。
《圆锥的体积》教学反思11
圆锥的体积这一部分内容是圆柱体积的迁移。在这节的设计上我主要是采用让学生自主探究----动手实践-----得出结论的模式进行教学的。在操作的过程中,我充分的利用学具,先让学生观察手中的圆柱与圆锥有什么关系,学生观察到他们是等底等高的,我的目的就是为了深化学生对这一个条件的认识。紧接着学生开始尝试用学具研究圆柱与圆锥体积的关系。当他们一切进行的都很顺利的时候,有一个小组突然提出用“圆柱向圆锥里倒水也是可以的。”话音刚落,另一个小组的学生马上说道:“那样很麻烦的`,还得测量出圆柱的体积,计算出来。”显然圆柱与圆锥之间的体积公式的推导过程已经牢牢的印在脑海中,这就已经达到了我所需要的效果了。
记得有位老师曾经说过:老师说了,学生记住了,没有多久就忘了,只有动手操作了,学生记住了,形象的记忆就会产生了。让我们多创造一些动手的机会给他们吧!
《圆锥的体积》教学反思12
【教材解读】
《圆锥的体积》这部分知识是小学阶段学习几何知识的最后一部分内容,也是人们在生产生活中经常遇到的几何形体,教学这部分内容,有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础,我认为《圆锥的体积》这部分内容在本单元中占有十分重要的地位。
【学情分析】
高年级学生分析问题,解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察法,猜想、操作等方法,组织学生探索规律,归纳总结,体验知识的生成和形成。
【教学目标】
1. 通过学生动手操作实验发现等底等高的圆锥体积之间的关系,从而得出圆锥体积的计算公式,并能运用所学知识解决实际问题。
2. 培养学生的动手操作能力和探究意识,发展学生的空间观念。
3. 通过生活中的故事,培养学生良好的思想品德。
【重点难点】
1.圆锥的体积公式的推导过程
2.进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。
【教学策略】
1.加强实践操作:
《数学课程标准》中要求“在教学中,应注重使学生探索现实世界中有关空间与图形的问题;应注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小、位置关系及变换”。所以,在教学中,设计了多次实验环节,让学生自己动手,亲身经历圆锥体积公式的推导过程,让学生的多种感官参与学习活动,在理解知识的基础上,发展学生思维。
2. 整合课程资源,创造性地使用教材;
数学课程要关注学生的生活经验,在引入新知时,我创设了一个贴近生活的情境,使枯燥的数学问题变为活生生的生活现实,让学生的课堂气氛充满了乐趣和活力,在探究圆锥体积公式时,设计了两次试验,使学生更加明白了:只有“等底等高”的圆锥和圆柱体积才能有3倍的关系。引导学生由表及里,层层逼近的过程,进行深的信息加工。
3.鼓励学生独立思考,引导学生自主探索,合作交流。
在教学中,我积极鼓励学生独立思考,自主探索,小组合作交流,通过小组合作完成实验过程,实验过程中培养学生敢于质疑,乐于交流与合作的能力。
【教学过程】
一、创设情境,引发猜想
1.播放录像。
夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)
2.引导学生围绕问题展开讨论。
二、自主探索,操作实验
同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。
1.小组实验。
(1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)
(2)同组的学生做完实验后,进行交流
2. 集体交流。
(各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)
3、深入探究“等底等高”
4. 推导公式。
同学们尝试一下,用V、S、h、表示圆锥的体积公式?(生独立写公式)
5. 问题解决。
同学们再回到故事中,你们应该知道小雅和小林怎样交换才公平合理了吧?它需要什么前提条件?
三、运用公式,解决问题
1、教学例3。
工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆沙子大约多少立方米?(得数保留两位小数)
2. 学生尝试计算,指名板演,集体订正。
汇报:(1)沙堆底面积3.14×(4÷2)2
=3.14×4
=12.56(平方米)
(2)沙堆的体积1/3×12.56×1.2
=4.19×1.2
≈5.02(立方米)
答:这堆沙子大约5.02立方米?
四、实践应用,拓展深化
1、填空。
1)一个圆柱体积是10立方米,和它等底等高的圆锥体积是( )立方米。
2)一个圆柱钢材能溶铸成( )个与它等底等高的圆锥体。
2、判断。
1)圆锥体积是圆柱体积的1/3。( )
2)圆柱体积一定比圆锥体积大。( )
3)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1( )
4)圆锥体积等于和它等底等高的圆柱体积的1/3。 ( )
3、圆锥的底面积是7.8平方厘米,高是2厘米,体积是多少立方米?
4、神舟五号宇宙飞船的上端是一个圆锥形,它的底面直径是2米,高2.1米,你能求出它的体积吗?
5、哈南双语幼儿园的屋顶是圆锥形,测量出它的底面周长是12.56米,高是6米,它的体积是多少?
五、质疑问难,总结升华
通过这节课的学习,你们有哪些收获?
【板书设计】
圆锥的体积
1/3
V=1/3Sh
例3
工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆 沙子大约多少立方米?(得数保留两位小数)
(1)沙堆底面积 3.14×(4÷2)2
=3.14×4
=12.56(平方米)
(2)沙堆的体积 1/3×12.56×1.2
=4.19×1.2
≈5.02(立方米)
答:这堆沙子大约5.02立方米?
【教学资源】
义务教育课程标准实验教科书教师教学用书
【教学反思】
今天上了《圆锥的体积》这节课,反思整堂课的教学,自我感觉较为满意的是以下几点:
1.大胆猜测,培养猜测意识
假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中把生活中的故事引入数学课堂,让学生大胆猜想它们的体积可能会有什么样的关系?使课堂充满生机、乐趣,激发了学生的求知欲,然后让学生借助学具进行实验、探究。事实证明这样教学设计不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。
2.操作验证,培养科学的实验观。
数学不仅是思维科学,也是实验科学。教学中,学生能通过观察、猜测、实验、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式:V=1/3Sh。在整个教学过程中,我非常重视让学生参与教学的全过程,学生始终是活动的主体。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己的实验结论,培养了学生科学的实验观。
3.重视课堂资源的生成
教学中“圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?”这一教学环节不是预先设计的。它是课堂中随机生成的,却饱含着教师和学生真实的、情感的、智慧的、思维和能力的投入,有互动的过程,气氛相当活跃。在这个过程中既有资源的生成,又有过程状态生成,让学生在实践中进一步明确了:只有等底等高,圆锥的体积才能是圆柱体积的三分之一。 总之,这节课,每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的`数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们不仅收获了知识更体验到了探究成功的喜悦。
【教学评析】
1.教师能深入了解学生,对学生的原有认知水平、知识技能、情感态度,即学习起点能力分析得比较清楚。力求构建一种非直线型的教学路径,这样的教学设计思路值得提倡。
2.教师能利用《数学课程标准(实验稿)》的理念处理教材,加工教材。如本节课结合了现实中的具体情景,创设了一个学生喜闻乐见的生活情境,并把这一故事情节贯穿整节课的始终。教学中做到了一波未平,一波又起,整节课的结构浑然一体。教师遵循了“现实题材——数学问题——数学模型——数学方法——解决问题”的过程来设计教学,引导学生亲身经历将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。
3.本节课在实验探索中,学生通过小组合作,发现出等底等高的圆柱体积是圆锥体积的3倍,有的同学会持反对意见,这样刚刚建立起来的平衡旋即被打破,当大家发现他们的实验器材不等底等高时圆柱体积不是圆锥体积的3倍,又能建立起新的平衡,学生在“平衡——不平衡——新的平衡”中,认知结构得到了丰富和发展。
4.多样化的数学活动,如实验、交流、推理、问题解决使学生的意义建构有了坚实的基础。学生的情感在认知的过程中也得到了和谐的发展,他们在相互交往中加深了理解、沟通和包容,品尝到了探索成功的喜悦。
5.在数学课堂上教师不失时机的进行德育教育,体现了在学科中“情感态度价值观”的培养,在学科中渗了透德育教育,为数学课堂增添了亮丽的一笔。
6、本节课教师引领学生积极探究新知,学生成为课堂上真正的主人,学生积极参与、自主合作探究知识,实现了学习方式的多样化。课堂上师生互动,注重学生的态度和情感的体验。回归常态教学,教学真实、扎实、朴实,构建了充满生命活力的课堂。
《圆锥的体积》课堂实录
一、创设情境,引发猜想
1.播放录像。
师:夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)
2.引导学生围绕问题展开讨论。
师:小林对小雅说:“我的雪糕可好吃了,我们来换一换吧!”小雅看了看她的雪糕,又看了看自己的雪糕,小雅陷入了沉思……”同学们,故事先讲到这。如果此时小雅和小林换了雪糕,你觉得小雅有没有上当?
生:我觉得小雅上当了,小林的雪糕小。
师:好,你的眼力真不错。如果这时小林手上又多了一个同样大小的圆锥形雪糕。小雅这时和小林换雪糕,你们觉得公平吗?
生:公平。
生:我觉得还是不公平,小雅还是吃亏。
师:同学们有不同的看法了,假如你现在就是小雅,小林手中的圆锥形雪糕有几个时,你才认为公平合理,才肯与他交换?
生:四个。
生:五个。
生:三个。
师:小雅究竟用几个跟小林怎样交换才公平合理呢?(学生沉默,几秒后有学生举手) 生:老师如果知道他们的体积就好办了,可是我们只会求圆柱的体积,不会求圆锥的体积。(学生均点头)
师:你的想法非常好。那圆锥的体积怎样计算呢?大家想知道吗?
生合:想。
师:好,这节课我们就一起来探究一下圆锥的体积这部分知识。(板书)
二、自主探索,操作实验
师:下面,请同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。
1.小组实验。
(1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)
(2)同组的学生做完实验后,进行交流
2. 集体交流。
师:下面请各个小组同学汇报你们是怎样实验得出结论的。
(各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)
3、深入探究“等底等高”
师:各小组的结论都是一样的:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。那老师就奇怪了,你们各小组间的圆柱和圆锥的大小不一样啊,结论怎么会一样呢?难道你们手中的圆柱和圆锥之间有什么奥妙吗?想知道吗?快探究一下吧!(生合作探究)
师:你们发现了什么?
生:我们发现圆柱和圆锥的底面积相等高也相等。
师:这用四个字概括就是“等底等高”。
生:我们也发现圆柱和圆锥等底等高。
师:也就是说只有圆柱和圆锥是等底等高的时候,圆锥体积才是圆柱的体积的1/3。 生:(举手提问)老师,圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?
师:这名同学提得问题非常有价值,他问:“圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?”大家说是吗?
生:我认为圆柱和圆锥不等底等高,他们的体积不会是3倍的关系了。(大多数同学点头,同意他的观点。)
生:我和他的意见不同,我认为圆柱和圆锥不等底等高,他们的体积还是三倍的关系。(有几名学生表示同意)
师:有的同学认为是,有的同学认为不是。那么这样,小组间调换一下圆锥,使你手中的圆
《圆锥的体积》教学反思13
该学习“圆锥的认识和体积”这部分知识了,想到在学生的生活中,纯圆锥的物体并不多见,所以这样安排本部分内容的教学。
第一节课带领学生做圆锥,画圆——剪圆——再剪出圆心角不同的'扇形——把两条半径无缝隙的粘住,放在桌上,一个圆锥成型了,如果你想粘上底面也可以,可是得知道底面的半径啊!(拓展怎样知道扇形的半径和圆心角的度数,求出圆锥底面半径的大小)
学生自己做出来的圆锥,对它的认识肯定是比较深刻的——圆锥由一个底面和一个曲面围城,底面是圆,侧面展开是一个扇形,还有强调对圆锥的高的理解。直角三角形沿一条直角边所在的直线旋转可以得到一个圆锥,让学生试一试,想象一下。
第一节课圆锥的认识,因为加上了让学生动手制作这一环节,教学效果出奇的好,也为下一节课做好的铺垫。
《圆锥的体积》教学反思14
在教学“圆锥的体积”这一课时,我没有用传统的讲解演示法去组织教学,而是采用探究性学习的方法组织学生的学习活动。围绕怎样能让学生积极参与探究活动的问题,我思索了好一阵子,曾作过这样的设计:圆锥的体积大小与什么有关?当学生回答与圆锥的底面积和高有关时,教师接着问:已知圆锥的底面积和高怎样计算圆锥的体积?这时,估计有学生很快说出计算公式,因为有学生已看过书,这是班级学生的实际情况,此时教师该怎么办?不让这些学生回答,这是对他们的不尊重,可能会打消他们学习的积极性,如果让他们回答,势必会影响班上绝大多数学生探索的积极性,因为他们原本是不知道这个结论的,现在结论已给出,又何必苦苦进行探索?
我反复地思考着,预想着学生中可能会出现的种种情况……,于是我决定提问:你能想什么办法自己去发现圆锥体积的计算公式?这一问题的提出,不在公式本身,而在于发现公式的思考方法上,我想,小学生往往只关心结果,不注意思考方法和过程,既使看过书的学生,大多也未曾思考为什么会是这样之类的问题,这问题能将学生的'思维聚焦在探究的方法上,而重视对探究方法的思考,正是我们的数学教学应该加强的,问题一提出,学生就置身于问题情景中,兴趣盎然地投入探究活动之中。
实践证明,整个学习过程,是一个积极探究的过程,学生始终是主动的探索者,从教学效果来看,学生不仅主动地建构计算圆锥体积的新知,而且思考力得到有效的培养。
课后反思这节课,我想探究性学习决不是让学生盲目的试误,否则将会出现形似探究,实际上还是讲解灌输的教学。我认为,进行探究性学习的关键是:教师要将自己假设成学生,了解学生思维的实际情况,善于将书本上结论性知识转变成学生乐于探究的问题,从而燃起学生探究的欲望,使学生以饱满的情态积极投入到探索性学习活动中,教师还必须引导学生关注探究的方法,给予探究方法的指导,让学生在探究中学会探究,提高主动获取知识的能力。
《圆锥的体积》教学反思15
1、学生通过自己的实验,非常顺利地得到等底等高的圆柱和圆锥体积之间的关系,推导出来圆锥的体积计算公式。原因之处有:(1)猜想:发挥学生的空间想象,使学生初步建立圆锥与圆柱体积之间的关系,教师预设学生可能粗略地知道有“三分之一”这一关系,“那么三分之一这一关系怎样推导呢”引起以下怎样推导圆锥的体积这一过程。
(2)在推导过程中,带着思考题(思考题实际就是学生实验的过程),让学生带有目标进行实验,让学生更有目的性,也非常方便,有操作性。
(3)学具准备充分,各小组选择水、沙子,增强趣味性,主动性,积极性高。
(4)公式推导完之后的一个反例子(出示一个非常大的圆柱和一个非常小的圆锥),让学生明确并不是所有的圆锥的体积都是圆柱体积的三分之一,从而强调了等底等高。
2、练习题由浅入深,判断题主要是要加深学生对概念、公式的运用和理解,第2题是书上的一组题,为提高效率只列式不计算,这三道题分别是告诉底面积和高、底面半径和高、底面直径和高,把几种类型都呈现出来。最后一题是动手实践题,一要考察学生的公式运用情况,二要考察学生的解决实际问题的能力及策略,虽然没做几道题,但我觉得:解决问题比什么都重要。
3、本来想用不等底、不等高的圆柱和圆锥参与实验,考虑到可能会得出错误结论而影响体积公式的推导,所以把这一环节省去。设计了一组大的.等底等高的圆锥和圆柱,让学生明确不管大小,只要等底等高就有3倍这样的关系。
4、时间分配上不到位,例题的处理中,考虑到本节的重点是理解公式并运用公式,所以没花多的时间,由于数字教大,部分学生没做完。
【《圆锥的体积》教学反思】相关文章:
圆锥的体积教学反思05-12
《圆锥的体积》教学反思04-14
《圆锥的体积》数学教学反思05-22
《圆锥的体积》教学反思 15篇04-19
《圆锥体积》教学反思08-28
圆锥的体积教学设计01-21
圆锥体积教学设计05-24
六年级数学《圆锥的体积》教学反思05-13
体积教学反思12-01