圆的认识教学设计(15篇)
作为一名无私奉献的老师,时常需要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么什么样的教学设计才是好的呢?以下是小编整理的圆的认识教学设计,欢迎阅读与收藏。
圆的认识教学设计1
学生分析:
学生在日常生活中经常接触到圆形物体,在低年级也已经有初步的认识过程,但都是直观的表象的认识。
教学目标:
1.知识与技能:使学生认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系。初步学会用圆规画圆。
2.过程与方法:通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念。
3.情感与价值观:通过学习,提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。
教学重点:
掌握圆的特征,同一个圆里直径和半径的关系。
教学难点:
掌握圆的特征并理解其在生活中的运用,用圆规按要求画圆。
教具准备:
多媒体课件一套。
学具准备:
圆形纸片、圆规、直尺、三角板、彩笔、硬币、图、线。
教学过程:
一、师生谈话,导入本课知识
师:同学们这节课老师给大家带来一些美丽的图案,你们想看吗?
生:想看。
师:看时请同学们认真观察这些图案有什么共同特征?
生:这些图案都是由圆形组成的。
师:对!这么美的图案你们能画出来吗?(不能)这节课我们就一起研究有关圆的知识,相信大家不但学会圆的许多知识,还能画出比老师还要美的图案。
生:从生活中寻找自己所认为的圆,有可能会回答:①自行车汽车的轮子是圆的;②篮球乒乓球是圆的;③硬币是圆的……
(第一次自主探索:画一画。)
二、自主探索,折一折
师:看来大家掌握得确实不错,生活中,车的轮子为什么制成圆的,车轴应该装在什么位置?下面请同学们拿出这样的圆形纸片,我们一起来研究圆。
1、把一个圆对折、再对折,你发现什么?
生折一折,找一找,画一画,反馈。
学生观察反馈:
①留下一条折痕;
②折痕刚好通过圆心;
③折痕将圆平均分成了两半;
生:
①各条折痕的交点刚好在圆心上;
②通过圆心可以折无数条直径和无数条半径;
2、认识圆心,直径,半径。
师小结后学生找出它的圆心、半径和直径,并把它画出来。
师:同学们真棒,你还能从刚才折的小圆片中发现什么知识吗?
3、理解半径直径的特点及关系。
同圆中所有半径都相等,所有直径都相等。
直径是半径的2倍;
教师根据学生回答板书:d=2rr=d÷2
师出示两个大小不同的圆让学生比较直径半径的倍数关系成立的条件。
让学生明确:应在同圆或等圆内。
三、用圆规画圆
师介绍:用圆规画圆最方便。
因为学生在认识圆之前,已经对圆有大量的生活经验,所以让学生想出各种办法得到圆,就能使学生感受到圆其实离我们生活很近,它就在我们的身边。通过全方位的学习活动,促进学生知识与能力的协同发展。第二次尝试画一画——用圆规画圆。
师:那请用学们用圆规自已尝试画一个圆。
没有画成功的同学把图案展示,我们愿意帮助你寻找原因。
生:(1、画移位的,2、重新画又找不到位置的.,)如:问为什么会移位,为什么会找不到原来的位置?
学生回答问题的原因,教师边示范边讲解:所以画圆的时候要先确定位置,点上一点,把钢针戳在点上,用手捏住圆规的头,将圆规略微倾斜一点,旋转一周,一个圆就画好了。请大家也一起试试看。
师:学生根据老师的讲解独立画圆。
师:大家画的圆的位置都一样吗?
生:不一样。
师:为什么会不一样?
生:因为刚针戳的位置不一样,(或点的位置不一样)
师:看来这个点能决定圆的位置,(板能决定圆的位置)
师:请同桌再互相比较一下你们刚才画的圆大小完全一样吗?
生:不一样。
师:为什么会不一样?
生:因为我们圆规的开口大小不一样。
生:圆规的两脚开得越大,所画的圆也就越大,圆规两脚间的距离能决定圆的大小。(师板书:能决定圆的大小)
(放音乐,让学生动手操作去发现去总结让学生感受到成功的喜悦。)
四、课堂练习,巩固深化
师:同学们掌握得真好,下面让我们来完成几道挑战题
(见课件)
1、判断直径和半径。
2、填空。
3、你能用今天学习的知识来解释一下为什么车轮子要设计成圆形而不设计成方形或其它形状吗?3
五、创作:
画出任意大小的圆,组合自己心中最美丽的图案!(学生在创作的过程中,播放轻音乐。)创作完成后在实物展台上展示
六、总结:
通过这节课的学习,你有什么收获吗?
圆的认识教学设计2
教学目标:
1.使学生认识圆,知道圆的各部分名称.
2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系.
3.初步学会用圆规画圆,培养学生的作图能力.
4.培养学生观察、分析、抽象、概括等思维能力.
教学重点:理解和掌握圆的特征,学会用圆规画圆的方法.
教学难点:理解圆上的概念,归纳圆的特征.
教学过程 :
一、创设探究情境,激发学习兴趣
1、 观察电脑画面中哪些物体的面是我们学过的图形。(电脑出示生活画面。)学生观察并指 出图形。(课件出示平面图形)请学生说说圆与以上图形有什么不同?(正方形、长方形、三角形、平行四边形、梯形都是由线段围成的图形,圆是一种由曲线围成的图形。)你一定想进一步了解圆,今天我们就来研究圆。(板书课题)
二、合作探究,发现问题
1、认识圆
(1) 你会用你带来的物品画圆吗?动手画圆, 看谁的方法多?学生四人一组动手操作。集体交流。
(2) 请同学们拿出课前准备的圆形纸片,摸一摸圆的边缘,是直的还是弯的?(弯曲的)教师说明:圆是平面上的一种曲线图形.学生再把圆对折、打开,换个方向,再对折,再打开……这样反复折几次.教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)教师指出:我们把圆中心的这一点叫做圆心.圆心一般用字母o 表示.教师板书:圆心。
2、探索半径和直径
(1) 请同学们打开圆形纸片,除了圆心外,你还看到了什么?什么是直径?什么是半径?请同学们自学课本56页,把你认为重要的概念划一划、读一读,并在圆形纸片上标出这个圆各部分名称。
(2) 检查自学情况。通过自学你认识了哪些新的概念?它们各用什么字母表示?
(3) 请同学们动脑想一想、动手画一画、量一量。(电脑出示问题)
在同一个圆里有多少条半径?所有半径的长度都相等吗?
在同一个圆里有多少条直径?所有直径的长度都相等吗?
在同一个圆里直径的长度与半径的长度有什么关系?
学生汇报研究结果。(在同一个圆里半径有无数条都相等,直径有无数条都相等。半径是直径的`一半。)
3、 画圆
(1)学生尝试用圆规画圆,集体交流,总结方法。
(2)学生练习用圆规画半径为3厘米的圆。
(3)电脑出示同心圆,请学生观察圆的什么变了,什么没变?圆的大小是由谁决定的?
(4)出示不同位置的等圆,请同学观察:圆心变了,圆的什么就改变了?圆的位置是由谁决定的?
三、实际应用,解决问题
a基本练习
(1)判断:
①所有的半径都相等,所有的直径也都相等。 ()
②画半径为2厘米的圆时,圆规两脚间的距离就是2厘米。 ()
③直径的长度是半径的2倍。 ()
(2)选择:
①在同一个圆内有( )条直径。
a 、2 b、无数c、4 d、10
②( )确定圆的位置,( )确定圆的大小。
a、圆心 b、半径c、直径
b、提高练习找出圆心和直径(p58的3题)
c、拓展练习讨论生活实际问题:为什么车轮要做成圆形的?能不能做成其他形状?为什么车轴要装在圆心上?
四、课堂小结
这节课你学习了哪些内容?你有什么收获?
圆的认识教学设计3
教学内容:《圆的认识》人教版 六年级上册
教学目标:
1、使学生认识圆的各部分名称,掌握圆的特征及画圆的方法。
2、在活动中培养学生观察、动手操作、与他人合作交流等方面的能力。
3、使学生感受生活中圆的存在及作用,感受平面图形的学习价值,提高学生数学学习的兴趣和学好数学的信心。
教学重难点:掌握圆的特征及画圆的方法。
教学过程:
一、创设情境,导入新课
(1)喜羊羊和灰太狼一起参加动物王国里举办的汽车设计大赛,喜羊羊设计一个圆形车轮的汽车,灰太狼设计一个方形车轮的汽车。它们行驶起来会是什么感觉呢?
(2)对于圆,我们一定不会感到陌生吧?生活中你们在哪见过它们呢?
(3)(课件出示)欣赏有关圆的美丽的图片,如向日葵、光环等。
【设计意图】
数学来源于生活,又应用于生活。创设学生熟悉的生活情境,使学生产生积极的心理需求,感受数学与生活的密切联系,体验到生活中处处有数学与数学的运用。
二、自主探索,交流互动
1、感悟画圆法
师:好了,欣赏了那么多美丽的圆,大家想画这些圆吗?你们有什么办法把圆画出来呢?
……
2、尝试用圆规画圆
师:利用实物画圆这个方法大家都会了,我们就不研究了。你们想挑战用圆规画圆吗?
(生在纸上画圆,师巡视,仔细观察学生画圆时出现的问题)
师:老师发现大部分同学画的圆很漂亮,但有小部分同学画的圆不是很好喔!你猜猜,他们可能在什么地方出现了问题?大家愿不愿意帮帮他们呢?
……
师:其实大家所说到的就是用圆规画圆的步骤和应注意的地方。谁说说?师根据生说相机归纳与板书,并示范画圆。
(1)确定圆规两脚间的距离
(2)把针尖固定在一个点上
(3)把另一只脚旋转一周
3、画定长为2厘米的圆
师:同学们学会画圆了吧?想再画一个吗?不过这次老师有一个小小的要求喔,就是要使咱班同学画的圆一样大,怎么办?(圆规两脚间的距离定的一样长)
【设计意图】
把静态的图片变为动态的操作,从学生的真实点出发,以练习作为贯穿用圆规画圆的教学过程的始终,并以观察、讨论、谈话等教学方法加以辅助,让学生在亲身经历知识的过程中掌握画圆的方法及注意点。
4、剪一剪、折一折
(1)认识圆心。师:把这些折痕都相交于圆中心的一点,我们把它叫做什么?用字母怎样表示?
小结:我们把圆中心的这一点叫做圆心,用字母“O”表示。请同学们用彩笔在圆上标出圆心。
(2)认识直径。师:我们任取一条折痕,观察它有什么特点?
小结:通过圆心,两端都在圆上,是一条线段。(揭示概念像这样通过圆心并两端都在圆上的线段就是圆的直径)用字母d表示,并在圆上标出。
(4)认识半径。师:画面中的.线段有什么特点?
小结:一端在圆心上,另一端在圆上任意一点。揭示概念(连接圆心与圆上任意一点的线段叫做半径)用字母“r”表示。
(5)半径与直径的关系。师:我们认识了圆心、直径与半径,想想它们的特征及其关系?
a在剪成的圆里你能画多少条半径?它们的关系有什么关系?
b在剪成的圆里你能画多少条直径?
c直径与半径有什么关系?
小组讨论交流
小结、板书
【设计意图】
在这里先让学生掌握画圆的方法,再让他们认识圆的各部分名称及其特征,既优化了教材的编排,又符合学生的认知结构,达到了教学目标的要求。
三、自练反馈,巩固练习
(1)填一填:
①同一圆里有( )条直径,有( )条半径。
②在同一圆里,直径与半径的比是( )。
③把一个圆规的两脚张开2厘米,画一个圆,它的直径是( )。
(2)判一判,对的打“√”错的打“×”。
①两端都在圆上的线段叫圆的直径。 ( )
②圆心到圆上任意一点的距离都相等。 ( )
③直径是半径的2倍。 ( )
(3)三题中选一题做:
①请你当裁判员:我们班举行迎“元旦”套圈比赛,参赛的同学应站成什么形状合理、又省时?请根据你的创意画出相应的示意图。
②请你当设计师:绿岛公园计划在圆形人工湖里建一个观影亭,请你拟定一个选择建设位置的方案并简要说明理由。
③体育老师想在操场上画一个10厘米的圆圈做游戏,可圆规太小,你能帮她想一个办法吗?
【设计意图】
《课标》提倡:学生的数学学习内容应是现实的、有意义的、富有挑战性的,强调数学知识的来源与应用。这一环节将枯燥的练习,融入到当设计师、裁判员中来,促使学生以饱满的热情参与学习,又在活动中巩固所学的知识,在交流中开阔思维,培养学生的创新意识及实践能力。而且练习的设计富有层次性,体现了实践性、应用性、开放性。
四、回顾总结
师:在这节课里,我们学到了什么?我们生活中有些东西为什么要做成圆形的呢?感兴趣的话课后我们可以用今天所学的知识解释一下。
圆的认识教学设计4
【教学背景】
随着现代教育技术的发展,在小学数学课堂中,学生已经不能满足于传统的“一支粉笔一块黑板”的模式,他们想要的是更精彩更联系生活的知识。多媒体课件就可以实现这个愿望,它能使数学问题由抽象变具体,由复杂变简单。每次用多媒体课件给学生上课,学生总是兴致勃勃,教学效率也有所提高。现在的学生对电脑已经很熟悉了,有时让学生亲自用课件练习,学生也总能全神贯注地领会教学意图,同时,组织学生自己在互联网上搜索相关知识,既提高了学生的学习兴趣,又在新颖的数学活动中掌握了新知,达到教学预期效果。
【教材简解】
圆是小学数学“空间与图形”领域里最后教学的一个平面图形,也是教学的唯一的曲线图形,是学生对平面图形认知结构的一次重要拓展。此前,学生已经学过了正方形、长方形、平行四边形等诸多直线图形。《圆的认识》教材编排思路是从情境入手,让学生感受到圆与生活的密切联系,再引导学生画圆,初步感受圆的特征,掌握圆规画圆的方法,引导学生认识圆的相关概念,掌握圆的基本特征。教学这部分内容,既能丰富学生空间与图形的学习经验,也是为学习圆的周长和面积打下基础。
【目标预设】
1. 知识与技能目标:
在观察、画图、操作等活动中感受并发现圆的有关特征;知道什么是圆的圆心、半径、直径;能借助工具画圆,能用圆规画指定大小的圆,能用圆的知识解释一些日常生活现象。
2. 过程与方法目标:
通过观察、画图、比较、猜想、上网搜索等活动,进一步积累认识图形的学习经验,增强空间观念,发展数学思考。
3. 情感与态度目标:
进一步体验图形与生活的密切联系,感受平面图形的美和学习价值,提高数学学习的兴趣和信心,培养应用数学的意识。
【教学过程】
一、铺垫孕伏
1.复习旧知
谈话:我们已经学过了许多的平面图形,仔细想一想、搜一搜有哪些常见的平面图形?
2.揭示课题
演示:一个小球,小球的一端还系着一段绳子,老师用手拽住绳的一端,将小球甩起来。
提问:小球的运动轨迹是一个什么图形?(学生回答:圆,然后利用搜索引擎搜索“圆形”
引入:对,这就是一个圆!圆也是一个平面图形。这节课我们就一起来认识圆。(板书课题:圆的认识)
二、探究新知
(一)教学例1
1.课件出示例1中的四幅图
提问:这些都是生活中常见的物体,这些物体上有圆吗?(学生上计算机点出圆)
2.课件出示篮球图片
提问:你认为它也是一个圆吗?(学生思考并回答)
指出:球是立体图形,而圆是平面图形,所以球不是一个圆,但球的切面是圆形。圆是平面上的曲线图形。
(二)教学例2
1.介绍圆规构造(同时出示圆规实物与课件)
在画圆时,我们通常会借助一个专门的工具,那就是圆规。圆规有两只脚,一只脚是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。
2.边讲解边演示圆规画圆的方法
第一步:把圆规两脚分开,定好两脚间距离。(板书:定长)
第二步:把有针尖的一只脚固定在一点上。(板书:定点)
第三步:把装有铅笔尖的一只脚旋转一周。(板书:旋转)
强调:针尖必须固定在一点,不可移动,重心放在针尖一脚上;两脚间的距离必须保持不变,要旋转一周。
3.尝试画圆
讲述:现在请你把圆规两脚间的距离分别定为2㎝和4cm,按照老师演示的方法自己试着画两个圆。
4.介绍圆心、半径和直径
讲授:刚才我们用圆规画圆时,针尖固定的一点是圆心,通常用字母o表示。(学生标出圆心)
讲授:连接圆心和圆上任意一点的线段是半径。通常用字母r表示。(学生标出半径)
提问:那你有没有发现圆规两脚间距离和半径有什么关系?(学生比较后发现,圆规两脚间距就等于半径)
讲授:通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。(学生标出直径)
强调:让我们再直观地来看看圆心、半径和直径。
5.巩固练习:练一练第1题。(教材p97)
三、深化感知(教学例3)
1. 认识半径特征
(1)比一比:
讲述:给大家10秒时间,看谁在自己的圆中画的半径最多!
追问:还能继续画吗?能画得完吗?说明了什么?(学生思考并回答:半径有无数条,同时课件出示“无数条”半径)
(2)量一量:
提问:用直尺量一量这些半径,你有什么发现?(板书:半径都相等)
(3)议一议:
追问:你们手上圆的半径和老师黑板上圆的半径长度相等吗?什么情况下半径的长度才相等? (板书:在同圆或等圆中)
2.认识直径特征
(1)猜一猜:
提问:在同一个圆里有多少条直径?这些直径都相等吗?(学生迅速反应:一个圆有无数条直径,它们都相等。同时课件出示“无数”条直径)
(2)谈一谈:通过前面的活动,我们对同一圆内半径和直径的特征有哪些认识?
3.半径和直径的关系
(1)讲述:我们已分别找到了半径和直径各自的特征,那么半径和直径之间还有关系?(同桌互相讨论后全班交流)
指出:在同圆或等圆中,直径的长度是半径的2倍,半径的.长度是直径的一半。
讲述:你能用字母表示这种关系吗?(课件演示并板书:d=2r,r=d/2)
(2)练习应用:(练习十七第1题)
4.认识圆的对称轴
提问:圆是轴对称图形吗?它的对称轴有几条?在哪里?(学生小组讨论后交流意见)
强调:对称轴是直线,应严密地表述:直径所在的直线是圆的对称轴。
四、生活思考
提问:你能用数学的角度解释一下为什么车轮要做成圆的?车轴应装在哪里?
五、全课总结
同学们,今天我们学习有关圆的知识,你对圆形有了什么新的认识?还有什么疑问吗?和大家一起来分享!
六、板书设计:
圆的认识
在同圆或等圆中,半径都相等,定长
直径都相等。定点
d=2rr=d/2旋转
【教学反思】
《数学课程标准》在高年级段的教学建议中指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,使学生通过观察、操作、猜测、交流、反思等活动,进一步发展思维能力,激发学生的学习兴趣。在《圆的认识》教学过程中,我注意从以下几方面来着力体现这一理念:
1、自主探索,凸显主体作用
在教学的各个环节始终将学生自主探索的理念贯穿其中,例如:让学生自主尝试画圆的方法;让学生小组合作,观察、探究圆的半径和直径的特点等,在各个活动中力求使学生崭露出他们的个性和创新意识。
2、联系生活,注重学以致用
“生活即学问”,在教学时时刻注意数学的生活性。例如:让学生举例说说生活中哪些地方有圆形;讨论生活中的车轮为什么是圆形的等环节,都注意了密切联系生活实际。
3、以生为本,引导构建新知
在对圆的概念的要求上,并没有强加给学生圆的科学概念,而是让学生通过观察、操作等活动进行学习,在头脑中自然形成圆的概念,这样学生才学得有趣,学得扎实,同时,结合学生的已有体验,组织学生在互联网条件下搜索相关知识,自主构建新知,既达到了教学目标,又提高了学生的自主利用互联网学习的能力。
圆的认识教学设计5
课前与同学谈话省略
师:今天上课我们学什么?大声地说“学什么”
生齐:圆的认识
师:从哪里看到的?只给我看,
生指屏幕
师:屏幕上有,还有呢?
师:说,哪有?
师:没错,圆片,还有吗?
生:圆规
师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?
生齐:想
师出示一个信封,摸出一个圆片,师:是圆吗?
生:是
师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?
生齐:有
师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?
师:好,现在看谁的反应最快?
师从信封里摸出一个长方形
生:长方形
师:男孩的反应快,状态也不错。
师从信封里摸出一个正方形
生:正方形
师:还有一个图形
师从信封里摸出一个三角形
生:三角形
师:猜猜还有吗?
师从信封里摸出一个平行四边形
生:平行四边形
师从信封里摸出一个梯形
生:梯形
师:行了行了,小朋友们,都别你们猜到了。
教师课件演示各种图形,
师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?
生齐:没有
师:为什么?
生:因为圆是由曲线围成。
师:而其他图形呢?
生:都是由直线,哎!线段围成。
师:同意吗?
师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?
生:角
师:圆有角吗?
生:没有。
师:所以圆特别的?
生:光滑
师:说的真好
师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?
生齐:曲线
师:给它一个名称。
生:曲线图形
师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?
生齐:不难。
师:谁让你们聪明呢?还有难的。
师出师一个不规则图形
师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?
生齐:不会
师:为什么?
师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……
生齐:丰满
师:嘿!瞧,还有一个
师出示一个椭圆,
师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?
生:不会,
师:为什么?
师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……
生:瘦瘦的
师:瘦瘦的。圆呢?
教师出示圆形教具,转动。
师:怎么样?
生:一样
师:怎么看到的一样?
师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?
行,就你吧,近水楼台
师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?
生:看不见了
师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……
生:不是
师:可以吗?
生齐:可以
师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?
生:不能
师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?
生齐:ok!
师:好,伸出你最拿手的一只手,右边,准备好了吗?
生:准备好了
生1:不是.
师:对不对?
生:对.
生1:不是.
师:对不对?
生:对.
生1:更不是.
师:瞧,这更字用的多好.
生1:更不是.
师:小家伙厉害.
生1:不是.
生:对.
生1:是.
生:对.
师:掌声鼓励一下.
圆是曲线图形
可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,
画圆
张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,
生2:我认为是圆的半径变了.
师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?
生:不能.
师:除了这个地方改变以外,还有那些地方不能动?
生3:圆心改变了.
师:在画圆的过程中,针不能改变.
画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?
生:能.
师:先别动笔,边画边考虑.
圆和什么有关系?
生:圆心和半径.
师:我知道你们说的半径是什么意思?
谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察
生4(到黑板前画出远的半径)
师:对不对?
生:对.
师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?
生:圆心.
师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?
生:O.
师:请在你刚才画的圆上,标出圆心,写出字母O.
继续看这条线段,圆心的另一端在哪里?
生;圆上.
师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?
生:不是.
师:那有多少个?
生:无数个.
师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?
生;不知道.
师:不知道不怕,怕的是他人说这三个字:为什么?
我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.
生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.
师:因为平滑,所以有无数条.
生6:因为圆心到圆上的距离全部相等
生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.
师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?
生:随便
师:请问,在圆上有多少个这样随便的点?
生:无数.
师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?
生:为什么?
师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?
生:相等.
师:同意的请举手,我的三个字又来了.
生:为什么.
师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?
生:圆规.
师:还有尺寸,尺寸让你们用来干什么的?
生:量.
师:现在就动手量一量.
虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?
生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.
师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.
生:半径有无数条,长度都相等,都一样.
师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?
生:得出来了.
师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.
生:错.
师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?
生:也有无数条,直径都相等.
师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?
除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?
生9:因为我们知道所有的半径都相等.
师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?
生:有.直径是半径的二倍.
师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?
生:半径和直径都相等.
师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?
生:四条.
师:正五边形,有几条?
生:五条.
师:正六边形?
生:六条.
师:正八边形?
生:八条.
师:圆形?
生:无数条.
师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.
现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?
生:不一样.
师:半径几厘米的圆比较大?
生:5厘米.
半径几厘米的圆比较小?
生:3厘米.
师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?
生:半径.
师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?
生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.
师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?
生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.
师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?
生:不是.
师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?
生12:用一个碗扣在白纸上,描一下.
师:有可能,但不是.
生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.
师:人造圆规.
生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.
师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?
生15:少了宽度.
师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?
生:不是.
师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?
生:5厘米.
师:4厘米呢?
生:4厘米.
师:假如半径是3厘米,那么直径呢?
生:6厘米.
师:是不是我把圆扯开6厘米,就可以画圆了/
生;不是.要扯开3厘米.
师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?
生:没有.
师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?
生:近似一个圆,
师:想一想,刚才我们旋转的是什么呀?
生:中心.
师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?
生:圆.
师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏
课前与同学谈话省略
师:今天上课我们学什么?大声地说“学什么”
生齐:圆的认识
师:从哪里看到的?只给我看,
生指屏幕
师:屏幕上有,还有呢?
师:说,哪有?
师:没错,圆片,还有吗?
生:圆规
师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?
生齐:想
师出示一个信封,摸出一个圆片,师:是圆吗?
生:是
师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?
生齐:有
师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?
师:好,现在看谁的反应最快?
师从信封里摸出一个长方形
生:长方形
师:男孩的反应快,状态也不错。
师从信封里摸出一个正方形
生:正方形
师:还有一个图形
师从信封里摸出一个三角形
生:三角形
师:猜猜还有吗?
师从信封里摸出一个平行四边形
生:平行四边形
师从信封里摸出一个梯形
生:梯形
师:行了行了,小朋友们,都别你们猜到了。
教师课件演示各种图形,
师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?
生齐:没有
师:为什么?
生:因为圆是由曲线围成。
师:而其他图形呢?
生:都是由直线,哎!线段围成。
师:同意吗?
师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?
生:角
师:圆有角吗?
生:没有。
师:所以圆特别的?
生:光滑
师:说的真好
师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?
生齐:曲线
师:给它一个名称。
生:曲线图形
师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?
生齐:不难。
师:谁让你们聪明呢?还有难的。
师出师一个不规则图形
师:它也是有曲线围成的'吧?弯弯曲曲的。那么你们会不会把它也摸出来?
生齐:不会
师:为什么?
师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……
生齐:丰满
师:嘿!瞧,还有一个
师出示一个椭圆,
师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?
生:不会,
师:为什么?
师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……
生:瘦瘦的
师:瘦瘦的。圆呢?
教师出示圆形教具,转动。
师:怎么样?
生:一样
师:怎么看到的一样?
师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?
行,就你吧,近水楼台
师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?
生:看不见了
师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……
生:不是
师:可以吗?
生齐:可以
师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?
生:不能
师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?
生齐:ok!
师:好,伸出你最拿手的一只手,右边,准备好了吗?
生:准备好了
生1:不是.
师:对不对?
生:对.
生1:不是.
师:对不对?
生:对.
生1:更不是.
师:瞧,这更字用的多好.
生1:更不是.
师:小家伙厉害.
生1:不是.
生:对.
生1:是.
生:对.
师:掌声鼓励一下.
圆是曲线图形
可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,
画圆
张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,
生2:我认为是圆的半径变了.
师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?
生:不能.
师:除了这个地方改变以外,还有那些地方不能动?
生3:圆心改变了.
师:在画圆的过程中,针不能改变.
画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?
生:能.
师:先别动笔,边画边考虑.
圆和什么有关系?
生:圆心和半径.
师:我知道你们说的半径是什么意思?
谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察
生4(到黑板前画出远的半径)
师:对不对?
生:对.
师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?
生:圆心.
师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?
生:O.
师:请在你刚才画的圆上,标出圆心,写出字母O.
继续看这条线段,圆心的另一端在哪里?
生;圆上.
师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?
生:不是.
师:那有多少个?
生:无数个.
师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?
生;不知道.
师:不知道不怕,怕的是他人说这三个字:为什么?
我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.
生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.
师:因为平滑,所以有无数条.
生6:因为圆心到圆上的距离全部相等
生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.
师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?
生:随便
师:请问,在圆上有多少个这样随便的点?
生:无数.
师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?
生:为什么?
师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?
生:相等.
师:同意的请举手,我的三个字又来了.
生:为什么.
师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?
生:圆规.
师:还有尺寸,尺寸让你们用来干什么的?
生:量.
师:现在就动手量一量.
虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?
生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.
师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.
生:半径有无数条,长度都相等,都一样.
师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?
生:得出来了.
师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.
生:错.
师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?
生:也有无数条,直径都相等.
师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?
除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?
生9:因为我们知道所有的半径都相等.
师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?
生:有.直径是半径的二倍.
师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?
生:半径和直径都相等.
师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?
生:四条.
师:正五边形,有几条?
生:五条.
师:正六边形?
生:六条.
师:正八边形?
生:八条.
师:圆形?
生:无数条.
师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.
现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?
生:不一样.
师:半径几厘米的圆比较大?
生:5厘米.
半径几厘米的圆比较小?
生:3厘米.
师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?
生:半径.
师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?
生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.
师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?
生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.
师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?
生:不是.
师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?
生12:用一个碗扣在白纸上,描一下.
师:有可能,但不是.
生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.
师:人造圆规.
生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.
师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,
正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?
生15:少了宽度.
师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?
生:不是.
师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?
生:5厘米.
师:4厘米呢?
生:4厘米.
师:假如半径是3厘米,那么直径呢?
生:6厘米.
师:是不是我把圆扯开6厘米,就可以画圆了/
生;不是.要扯开3厘米.
师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?
生:没有.
师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?
生:近似一个圆,
师:想一想,刚才我们旋转的是什么呀?
生:中心.
师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?
生:圆.
师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏
圆的认识教学设计6
单元教材分析:
这一单元的内容是圆,在这个单元中,教材安排了“圆的认识” 、“圆的周长和面积” 三个具体的内容,这三个内容由易到难,层层深入。
本单元内容是在学生学过了直线图形的认识和面积计算,以及圆的初步认识的基础上进行教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识和绘制简单统计图打好基础。
学生将在这个单元中,结合动手操作、比较、测量等多种数学活动,更深入的理解、掌握圆的特点,进一步发展空间观念。
单元教学目标:
1.学生认识圆,掌握圆的特征;理解直径半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。
2.探索圆的周长与面积的计算方法中,获得探索问题成功的体验。
3.亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。
4.通过以上一系列的学习活动,激发学生的学习兴趣,培养主动探索的欲望和创新精神。
5.培养学生观察、比较、想象等能力,进一步发展学生的'空间观念。
单元教学重点:
1.学生认识圆,知道圆的各部分名称。
2.掌握圆的特征及在同一个圆里半径和直径的关系。
3.初步学会用圆规画圆,培养学生的作图能力。
4.亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。
圆的认识(一)
教学目标:
1.使学生认识圆,掌握圆的各部分名称。
2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。
3.初步学会用圆规画圆,培养学生的作图能力。
4.培养学生观察、分析、抽象、概括等思维能力。
教学重点:
在动手操作中掌握圆的特征,学会用圆规画圆的方法。
教学难点:
理解圆上的概念,归纳圆的特征。
教材分析:
教材首先说明什么是圆,并结合周围物体说一说,这样调动了学生已有的生活经验,再通过画圆、折圆、测量等活动,展现圆的特征,其目的在于让学生通过观察、操作理解圆中的各部分关系,从而掌握圆的特征并解释生活中相关问题。
学情分析:
圆是在学生学过了直线图形以及圆的初步认识的基础上进行教学的。圆这一平面上的曲线图形,学生在生活中经常看到,它到底有什么特征呢?是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获取一些有关圆的特征的知识,这样回大大提高学生的学习兴趣,发挥学生的主体性。
教学过程:
活动一:演示操作,揭示课题
师:一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来。
1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)
2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识。(板书课题:圆的认识)
活动二、动手操作,探究新知
(一)教师让学生举例说明周围哪些物体上有圆。
(二)认识圆的各部分名称和圆的特征。
1.学生拿出圆的学具。
2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)
教师说明:圆是平面上的一种曲线图形。
3.通过具体操作,来认识一下圆的各部分名称和圆的特征。
(1)先把圆对折、打开,换个方向,再对折,再打开??这样反复折几次。 教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)
仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)
教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。
教师板书:圆心
(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么? (圆心到圆上任意一点的距离都相等)
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。(教师在圆内画出一条半径,并板书:半径 )
教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?
在同一个圆里可以画多少条半径?
所有半径的长度都相等吗?
教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。
(3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?
教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母 d来表示。(教师在圆内画出一条直径,并板书:直径)
教师提问:根据直径的概念同学们想一想,直径应具备什么条件?
在同一个圆里可以画出多少条直径?
自己用尺子量一量同一
个圆里的几条直径,看一看,所有直径的长度都相等吗? 教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。
(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。
(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?
如何用字母表示这种关系?
反过来,在同一个圆里,半径的长度是直径的几分之几?
教师板书:在同一个圆里,直径的长度是半径的2倍。
(三)反馈练习。
1.P58 1
2.填表
(四)圆的画法。
1.学生自学,看书57页。
2.学生试画。
3.学生通过试画小结用圆规画圆的方法,注意的问题。
4.教师归纳板书:1.定半径;2.定圆心;3.旋转一周。
教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。
5.学生练习
(五)教师提问
为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置? 教师板书:半径决定圆的大小,圆心决定圆的位置。
(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?
活动三、实践与应用
(一)判断
1.画圆时,圆规两脚间的距离是半径的长度。( )
2.两端都在圆上的线段,叫做直径。( )
3.圆心到圆上任意一点的距离都相等。( )
4.半径2厘米的圆比直径3厘米的圆大。( )
5.所有圆的半径都相等。( )
6.在同一个圆里,半径是直径的。( )
7.在同一个圆里,所有直径的长度都相等。( )
8.两条半径可以组成一条直径。( )
(二)按下面的要求,用圆规画圆。
1.半径2厘米。
2.半径2.5厘米。
3.直径8厘米。
(三)怎样测量没有圆心的圆的直径?
活动四、全课小结
这节课我们学习了什么?通过这节课的学习你有什么收获?
板书设计
在同一个圆里有无数条半径,所有半径的长度都相等。
在同一个圆里,直径的长度是半径的2倍。 半径决定圆的大小,圆心决定圆的位置。
圆的认识教学设计7
【教学内容】
义务教育课程标准北师大版试验教材六年级上册第一单元第2、3页“圆的认识一”。
【教学目标】
1、结合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。
2、结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。
3、通过观察、操作、想象等活动,发展空间观念。
【教学重、难点】
1、圆的特征。
2、画圆的方法。
【教具、学具准备】
1、三角尺、直尺、圆规。
2、教学课件。
【教学设计】
一、观察思考。
1、欣赏生活中的圆:棋子、桌面、钟面、车轮、中国结。
2、观察这些图形与我们以前学过的图形有什么不同?
生活中还有哪些物体的.面是圆形?
做套圈游戏,哪种方式更公平?
二、画一画。
你能想办法画一个圆吗?
用手比划着画圆。
用一根线和一支笔画圆。
用圆规画圆。
2、教学用圆规画圆的方法。
三、认一认。
学生用圆规画一个圆。
讨论:圆规的“尖”、圆规张开的两脚之间的长度所起的作用。
告诉学生半径和圆心。
四、画一画、想一想。
要求学生画一个任意大小的圆,并画出它的半径和直径。
观察比较得知:圆有无数条直径,无数条半径。
在同一个圆内直径都相等,半径都相等。
以点A为圆心,要求学生以A为圆心画两个大小不同的圆。
画两个半径都是2厘米的圆。
五、讨论。
圆的位置与什么有关系?
圆的大小与什么有关? 使学生通过观察日常生活中的圆形物体,建立正确的圆的表象。
使学生在动手操作中体会圆的本质特征。
让学生进一步体会圆的本质特征。
让学生认识到圆心决定圆的位置,圆的半径决定圆的大小。
六、观察与思考。
1、播放课件。
动物王国自行车比赛。分别有圆形、椭圆形、正方形的车轮。
思考:车轮为什么是圆形?
操作:
用硬纸板分别剪一个圆形、正方形、椭圆形。
小组合作描出运动轨迹。
七、练一练。
课本练一练题目。
八、全课小结。
【教学反思】
圆的认识是在学生已有知识的情况下进行的,所以学生很快能找到圆的主要特征,而且能从本节课里掌握圆的特征,掌握圆各部分的名称,以及直径半径等之间的关系。
圆的认识教学设计8
教学目标:
1、让学生在操作、体验中认识圆,知道圆各部分的名称,掌握圆的特征,能正确画圆,初步利用圆的知识解释一些日常生活现象。
2、通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念,发展数学思考。
3、通过学习,进一步体验图形与生活的联系,感受平面图形的学习价值,提高学生对数学的好奇心与求知欲,体验数学活动的意义和作用。
教学重点:
掌握圆的各部分名称,圆的基本特征,学会用圆规画圆。
教学难点:
归纳圆的特征。
教学准备:
老师准备、教具圆规,学生每人准备一张白纸、一把圆规、两个大小不一的圆片。
教学过程:
一、溯源生活,导入新课
1.欣赏,走进圆的世界。
师:老师给同学们带来了一些图片,我们一起来看看吧。
师:这些图片中有什么相同之处?
(都是圆形物体。)
2.揭示课题。
今天这节课我们就一起走进圆的世界去探寻圆的奥秘。板书课题:圆的认识
3.师:生活中很多物体的面是圆形的,同学们能说说你们在哪儿看到过圆吗?
让学生说一说。
二、操作体验,感悟特征
1、教学画圆
师:说了这么多的圆,你想不想亲自动手画一个圆?(想)
师:现在请同学们利用手中的工具画一个圆,会吗?在白纸上试着画一个。
学生动手画圆。
引导学生交流所画的圆,并说说是怎样画的。
师:你能告诉老师用什么画的吗?有不是用圆规的画的吗?
师:你能告诉我为什么你们都喜欢用圆规画呢?
小结:用圆规画得圆很标准而且方便。
师:现在请同学们用圆规在纸上画一个圆。
师巡视,找出失败的作品。
师:同学们,你们觉得这些圆画得怎么样?
师:这些同学之所以没能成功地用圆规画出一个圆,可能在哪儿出问题了?
(1是没有固定好有针的那个脚;2是两脚之间的距离变化了;3是可能不会旋转;4拿圆规方法不对。)
师:其实同学们发现了没有,刚才你们说得问题就是在画圆的时候应该注意的地方。
师示范画圆。边画边说步骤。
第一步:把圆规两脚分开,定好两脚间距离。(板书:定长)
第二步:把有针尖的一只脚固定在一点上。(板书:定点)
第三步:把装有铅笔尖的一只脚旋转一周。(板书:旋转)
强调:针尖必须固定在一点,不可移动,重心放在针尖一脚上;两脚间的距离必须保持不变,要旋转一周。
师:现在,掌握了这些要求,有没有信心比刚才画得更好?
学生画圆。
师:刚刚老师发现,同学们画的圆有的大有的小,你们知道为什么会这样吗?
(画的时候圆规两脚之间的长度不一样。)
师:现在老师想请同学们画同样大小的圆,你们有办法吗?谁来帮老师想个办法?
师:好,现在我们就把圆规两脚间的距离统一定为4厘米。
师:大家动手画一个。圆我们画好了,但是如果有人要你介绍这个圆,你怎么说呢?
2.教学圆的各部分名称。
(如果有学生说出半径、直径这类的词)师:刚才同学们用到了半径、直径,我们把它写下来好吗?(板书)那么什么是半径、直径呢?下面我们把课本翻到94页,例2下面的一段话会告诉你答案,自学例2下面的一段话。
师:现在你会介绍了吗?什么叫半径呢?(引出下面的教学内容。)
师:那什么是圆的圆心呢?(针尖固定的一点是圆心。)
学生说,教师在黑板上标出。圆心通常用大写字母O表示。
师:圆心有什么作用?它可以确定圆的什么?
师:刚刚同学介绍说半径是连接圆心和圆上任意一点的线段。圆心我们已经知道了,那什么是圆上任意一点呢?你能找一找吗?你会画半径吗?
指名学生上黑板上画半径。其余学生在自己画的圆上画好。
师:半径通常用字母r表示。请同学们在自己的圆上标出。
师:什么是直径?(通过圆心,两端都在圆上的线段。)
师:老师这里在圆上画了一些线段,现在请同学们来帮忙判断是不是直径,可以吗?
师:好,请同学们在自己的圆上画上直径,直径我们可以用字母d表示,请同学们标出。
师:下面老师想考考大家,找出下面圆的直径和半径。(让学生说明是怎样想的。)
3.探究圆的基本特征。
师:我们已经认识了圆的圆心、半径、直径。大家想不想再深入地研究一下圆呢?单单圆心、半径、直径里面就蕴藏着很多知识,你想研究吗?
师:接下来请同学们拿出信封里的圆片,同桌之间一个大圆,一个小圆。请同学们折一折,画一画,量一量,比一比,议一议。相信同学们肯定有精彩的发现。
(1)圆有无数条半径和直径。
师:你是怎么发现的?
学生可能是通过画发现的,也可能是推想的。
(2)在同一个圆里,半径的长度都相等,所有的直径长度都相等。
预设:如果学生没有说是在同一个圆里,那教师就及时追问:你的圆的半径跟你同桌圆里的半径一样长吗?跟老师黑板上画的圆的半径一样长吗?那怎么说更好呢?
师:你是怎样发现的,能说一说吗?
学生说明。有些学生是折的`,有些学生是量的。
(3)同一个圆里直径是半径的2倍。
师:你是怎么知道的?
学生可能说是观察到的,也可能是量的。
师:你会用含有字母的式子来表示它们之间的关系吗?
d=2r r=d÷2
师:如果老师告诉你圆的半径或者直径,你能说出它的直径或者半径吗?
师:好,那老师就来考考大家。
(出示练习十七第1题。)
(4)圆是轴对称图形,有无数条对称轴。
师:你是怎么知道的?
师:还有其他发现吗?
师:刚才大家通过自己的努力又发现了圆这么多的特征,看来只要善于观察,善于探索,善于研究,就会有意想不到的收获。
三、巩固练习,深化认识
师:接下来,老师有几个问题想请同学们解答一下,你们愿意吗?
出示判断题
(1)直径长度是半径的'2倍。()
(2)圆心决定圆的位置,半径决定圆的大小。( )
(3)画一个直径4厘米的圆,圆规两脚的距离应该是4厘米。( )
(4)在同一个圆内只可以画100条直径。 ( )
四、走进历史,探索信息
师:今天我们一起认识了圆。其实,早在两千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:&ldqu;圆,一中同长也。&rdqu;你怎么理解这句话?
师:我国古代这一发现要比西方整整早一千多年。说到这里你有什么想法!
师:其实在我们古代对圆的研究远不止这些,有兴趣的同学可以利用课余时间通过网络去了解。现在老师还为大家带来了一个古代的圆,你们认识吗?对了,这是我们古代的太极图,有句话说,太极生两仪,两仪就是我们图上的黑和白,表示阴和阳。谁来说说看这幅图是由什么构成的?
师:原来它是用一个大圆和两个同样大的小圆组成,假如小圆的半径是3厘米,你又能知道哪些信息呢?
师:同学们发现的信息还真不少,只要同学们肯动脑筋,善于联系,在以后的学习中肯定会有更多收获。
五、全课总结
师:在古代我们很早有了圆的发现和研究,在现代圆一直扮演着重要的角色,并一度成为美的使者和化身。接下来我们一起再来欣赏一下关于圆的一些图片。感觉怎么样?美吗?想说点什么吗?
师:的确圆是非常漂亮的图案,以前有位思想家说过,圆是世界上最美丽的图形。可见这句话不是随便说的,那么其中到底蕴涵了什么深沉的意义呢?这个问题就留给同学们课后思考。相信随着你们学识的增长,会有更多更深的理解。
圆的认识教学设计9
教学内容:
人教版六年制小学数学第十一册第四单元“圆”的起始课。
教学目标:
1、认识圆的特征,初步学会画圆,发展空间观念。
2、在认识圆的过程中,感受研究的一般方法,享受思维的乐趣
教学重难点:
教学重点:掌握圆的特征,理解同圆或等圆中半径和直径的关系。
教学难点:画圆
教学准备:
教具、学具准备。
教具准备:
圆规、三角板、多媒体课件。
学具准备:
圆规直尺、铅笔
课前学习活动。
(1)观察生活中的圆。
教学程序及设计理念
一、创设情境激发兴趣
1、引言:对于圆(板书“圆”字),同学们一定不会感到陌生吧?说说生活中,哪些物体的形状是圆的?
2、多媒体课件播放精美图片,让学生感受生活中丰富多彩的圆。
3、揭示课题。
(板书课题:圆的认识)
二、在画圆中感受新知
1、我们一起回顾我们昨天预习的情况。
2、体会画圆的多种方法。
3、在观察中体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。
4、在操作中丰富感受
(1)操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。
(2)体会(学生第二次画圆):如果方法正确,为什么用圆规画不出直线图形或是其它的曲线图形?
(3)引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。
5、在交流中建构认识
(1)引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。
(2)思考:半径有多少条、长度怎样,你是怎么发现的?
(3)概括:介绍古代数学家的`相关发现,并与学生的发现作比较。
6、类比:先介绍直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。
三、实际应用、深化认知
1、车轮为什么做成圆形,车轴应该装在哪?
2、篮球场的中间为什么有圆。
3、扣子的扣眼应该开多大的口?
板书设计:
圆的认识
圆心O
半径r
o无数条相等
直径d
圆的认识教学设计10
教学内容:
人教版六年级上册教材第57-58页内容和“做一做”及第60页的第1—5题。
教学目标:
1、认识圆,掌握圆的特征,理解直径与半径的关系。
2、会使使用工具画圆。
3、3、培养观察、分析、综合、概括及动手操作能力。
教学重点:
通过动手操作,理解直径与半径的关系,认识圆.。
教学难点:
画圆的方法,认识圆的特征。
教学准备:
投影仪、课件等
教学过程:
一、创设情境,引入复习
《圆的认识》教学设计
简单说说下面这些图形的特征?
长方形正方形平行四边形三角形梯形
2、圆是用什么线围成的?举例:生活中有哪些圆形的物体?
3、出示圆片图形:(1)圆是用什么线围成的?(圆是一种曲线图形)
(2)举例:生活中有哪些圆形的物体?(钟面、车轮、水杯、碗口等)
【设计意图:通过复习旧知,找出生活中的圆形物体,让学生进一步感受数学来源于生活,提高其学习的兴趣。】
二、探索新知
(一)认识圆心、直径和半径。
1、教师课件出示自学提纲,自学课本p56-57
(1)生拿出准备好的一个圆纸片。
(2)课本第58页动手折一折。
折过2次后,你发现了什么?再折出另外两条折痕呢?
(3)指出纸片的圆心、直径和半径。并在剪下的'圆中分别标出。
2、自学,教师巡回指点,发现难点。
3、教师在黑板上画一个圆,让个别学生上台指出。
4、小组讨论:
(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?
(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?
(3)想一想:在同一个圆中有多少半径、多少直径?直径和半径的长度有什么关系?
不在同一个圆中呢?
(4)小结:在同一个圆里,有无数条直径,且所有的直径都相等。
在同一个圆里,有无数条半径,且所有的半径都相等。
5、直径与半径的关系。
(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。得出结论:在同一个圆里,直径是半径的2倍,半径是直径的一半。
板书:
①在同一个圆里,有无数条直径,且所有的直径都相等。
②在同一个圆里,有无数条半径,且所有的半径都相等。
③在同一个圆里,d=2r;《圆的认识》教学设计
(2)第58页“做一做”第1题。
【设计意图:学生在老师的精心安排下积极参与到学习的活动中,通过学生折一折、量一量、议一议等活动,让学生自己认识了圆的各部分名称,掌握了圆的特征。体现了学生的自主学习的能力。】
(二)画圆。
1、介绍圆规的各部分名称及使用方法。
2、让个别学生说出老师刚才是如何画圆的。
学生自学课本第57页并小结出画圆的步骤和方法。
3、小组内画r=3cm的圆。组长检查评比,然后全班评比。
4、完成第58页“做一做”第2题。
【设计意图:让学生仍然采用自学为主,让他们自己动手探索画圆的方法,充分尊重其
主动性,让他们自己在相互的交流中学会了画圆,掌握了画圆的技巧。】
三、巩固练习
1、判断,并说明理由。
(1)半径的长短决定圆的大小。()
(2)圆心决定圆的位置。()
(3)直径是半径的2倍。()
(4)圆的半径都相等。()
2、请试着用圆规画几个大小不同的圆。你能发现什么?说一说画圆的步骤和方法。
画一个半径是2厘米的圆。再画一个直径是5厘米的圆。
3、完成第60页的第2、3题。
生独立完成后,再由学生自己讲评。
4、思考题:在操场如何画半径是5米的大圆?(即第60页的第4题)
学生独立完成教师巡回查看,发现疑难。
小组内评比,纠错。组长组织解决存在问题
5、思考:圆和以前学过的平面图形有什么不同?
四、总结梳理
这节课你学到了什么,对自己的课堂表现还有什么提议吗?觉得在哪些地方还需改进。
作业:完成第60页的第1、5题。
板书设计:
圆的认识
①在同一个圆里,有无数条直径,且所有的直径都相等。
②在同一个圆里,有无数条半径,且所有的半径都相等。
③在同一个圆里,d=2r;
圆的认识教学设计11
一、课题引入
1、课件出示:圆 这样一个圆让你联想到生活中的什么物体?(月饼、月亮、硬币、钟面……)
2、老师也收集了一组,瞧(出示图片)连大自然对圆也是情有独钟!(欣赏)
3、有什么感受?难怪20xx多年前,伟大的古希腊数学家毕达哥拉斯在研究完大量的平面图形后,发出这样的感慨:在一切平面图形中,圆最美。
4、圆看起来很美,究竟是什么内在原因使得圆看起来那么美?现在就来研究圆的奥秘。
二、在画圆中,解读“圆”的概念
1、师:你能试着在纸上画一个圆吗?
预设:利用圆形物体描圆;利用工具画圆(有小孔的木条、绳子、圆规)
如果有学生用物体描圆,师则引导假如我们身边没有这些圆形物体,你准备怎么办?学生一下子想不出来,则课件出示:有小孔的木条、绳子。
2、学生说说利用工具怎样画圆,可以请学生演示。
3、其实,很多同学知道还有专门的工具:圆规,请同学们用圆规在纸上画圆。大胆地猜一猜,这些同学之所以没能成功地用圆规画出一个圆,可能在哪儿出问题了?
4、师:刚才我们用圆规画圆、用绳子画圆,工具不一样,画出来的却都是圆。这是什么道理?
(预设:都绕了360度;都有一个中心点;两者画圆的原理是一样的。运动时与中心点的距离是一样的'。)
5、看到们画的这么好老师也想画一个圆,师作图,(教师画完半个圆后,停下。)想象一下,照这样画下去,会画出一会儿凹、一会儿凸的平面图形吗?
预设:因为圆规两脚间的距离没有变;就是从这儿(手指圆上的点)到这儿(手指圆心)的距离没有变。只要距离不变,就不会画出一会儿凹、一会儿凸的平面图形了。
6、自学圆的各部分名称及关系
生看书自学 反馈 给黑板上(或自己画的圆画出一条半径、直径,再标上字母)
7、学生画制定的圆:分别画r=2cm, d=2cm的圆
三、在运用中体验圆与半径、圆心的关系
让大家在一张正方形纸上画一个最大的圆,怎么画?
学生思考后动手操作、反馈
预设:学生有不成功的作品,则让大家一起分析;有成功的作品让他说方法。引导学生理解在正方形画最大圆的关键:①如何找到圆心(圆的位置)②如何确定半径(圆的大小)
师:(借助PPT动态演示找正方形中心点的过程)这就是圆心。接着确定半径,有了圆心和半径,就可以画出一个最大的圆。(让学生修正自己的作品)
四、拓展与延伸
师:其实,今天我们对圆的认识还是很初步,关于圆你还想学习知道些什么?(生说)
师:圆与正方形有什么不同?为什么汽车的车轮要用圆的,不用方的呢?这些问题,同学们课后去思考。
圆的认识教学设计12
教案背景
1、面向学生:小学
2、学科:小学数学
3、课时:1
4、师生课前准备:
(1)学生准备好圆规、直尺、圆纸片
(2)学生自带一两个轮廓为圆的小物品。
(3)教师准备好课件、与本课相关的网络资源
《圆的认识》一课选自人民教育出版社小学数学六年级上册的教学内容。本课是在学生认识了长方形、正方形、三角形等多种平面图形的基础上展开,也是小学阶段认识的最后一种常见的平面图形。
教材编排思路的第一个环节是 “动手动脑”,先让学生想办法画一个圆,通过这个环节让学生发掘生活中关于圆的物体,感受生活中的圆。在此基础上要求学生将所画的圆纸片剪下来,再引导学生动手对折,初步感受圆的特征,认识圆的圆心、直径、半径概念。通过画一画、量一量发现半径和直径的关系。最后掌握用圆规画圆的方法。这样的编排,学生对于圆的相关概念及特征的理解和把握是建立在教师的指引和调控下,学生自我动手发现知识。
基于这样的认识,我试图对本课的教学思路进行教学设计。一方面,通过拓展空间,将学生进一步置身于探索者、发现者的角色,引导学生自主展开对于圆的特征的发现,并在师生,生生互动完善相应的认知结构;另一方面,我又借助媒体联系生活,提高圆的知识在生活应用的趣味性,提高学生的学习兴趣和激情。
一、教材分析:
《圆的认识》是人教版小学数学六年级上册第五单元《圆》中的.教学内容。本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好基础。
二、教学目标:
1、使学生认识圆,掌握圆的各部分名称及特征,
2、理解同圆中或等圆中直径与半径的关系。
3、会使用工具正确规范画圆,培养学生的作图能力.
4、培养学生观察、分析、综合、概括及动手操作能力。
三、教学重难点:
1、教学重点:感知并了解圆的基本特征,认识圆的各部分名称。
2、教学难点:理解直径与半径的关系,熟练掌握画圆的方法
四、教学方法
1、利用多媒体创设情境,让学生感受数学来源于生活,服务于生活。
2、课堂上坚持以生为本,创造师生互动、生生互动,民主平等,情感交融的课堂氛围。
3、创设步步递进的课堂环节。充分调动学生已有的知识与技能,使其自觉地思考,培养学生观察、分析、综合、概括及动手操作能力。
五、教学过程
(一)、结合生活、导入新课
1、课前热身游戏:摸圆形纸片游戏。
说到圆,今天我们就来学习圆,我们先来复习一下我们以前学习过的平面图形。
2、游戏中概况圆的定义。
(1)师:我们已经学过的平面图形有哪些?(课件出示长方形、正方形、平行四边形、三角形、梯形的图形。)
(2)组织学生游戏:这里有一个黑色布口袋,将这些形状的硬纸片装入其中,你能从中摸出圆形吗?(让几名学生上台摸。)
学生摸完后,
师:有可能把其他图形当成圆形吗?为什么?
(3)结合学生叙述,小结圆的定义:“圆是平面上的一种曲线图形”(贴板书:“圆是平面上的一种曲线图形”)
3、学生举例巩固认识。
师:在我们的生活中你还知道哪些物体的形状是圆形的? 结合学生举例,多媒体出示其中的一些物体图形。
(如果有学生说球体是圆,出示实物乒乓球说明其是立体图形,而不是圆,并切开它进行实验,指出它的截面是一个圆。)
4、学生观察课本第57页的主题图。
师:同学们,现在请大家认真观察主题图看谁在这幅图上找到的圆多?
生:(车轮、花坛、水池……)。想一想,为什么车轮都是圆的呢?学生各抒己见。
师:带着这个问题,通过这节课的学习,我们就能找出答案。
(二)、动手操作、研究特征
(1)“我能画”环节,学生用自己喜欢的方法画圆(不限定用圆规)(学生用圆柱、三角板中的小圆、直尺中小圆、茶杯盖……)
(2)“我能剪”环节,剪出自己画好的圆。
(三)、认识圆的特征
1、动手折一折。
生:折自己剪下的圆
师: 折过2次后,你发现了什么?
生:两折痕交于一点。
师生总结:两折痕的交点叫做圆心,圆心一般用字母O表示。 师: 再折出另外两条折痕,看看圆心是否相同。
2、认识直径和半径。
(1)将折痕用铅笔画出来,比一比是否相等?
(2)观察这些线段的特征。(圆心和圆上任意一点的距离都相等)
(3)板书:通过圆心并且两端都在圆上的线段,叫做直径。连接圆心到圆上任意一点的线段,叫做半径。
3、讨论:
(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?
(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?
(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。 在同一个圆里,有无数条半径,且所有的半径都相等。
4、直径与半径的关系。
(1)学生用尺子独立量出自己手中圆的直径与半径的长度,看它们
之间有什么关系?然后讨论测量结果,找出直径与半径的关系。 得出结论:在同一个圆里,
(四)、圆规画圆
师:请大家拿出手中的圆规,认真观察一下圆规的样子。
1、介绍圆规的各部分名称及使用方法。
2、引导学生自学用圆规画圆,并小结出画圆的步骤和方法。
师:请同学们用圆规画两个大小不同的圆,观察对比所画的两个圆,有什么不同?哪些地方不同(大小、位置)请同学们思考为什么两个圆会不相同呢?是什么决定圆的大小?
小组讨论:(半径小,则圆小;半径大,则圆大。)
圆的位置不一样,是因为固定点的位置不同,造成圆心的位置不一样,因此圆的位置不一样。
小结:圆心决定圆的位置,半径决定圆的大小。
圆的认识教学设计13
一、教学目标的设计。
1、教材分析
本节课的教学内容是人教版数学第十一册第五单元《圆》的第一节内容。《圆的认识》主要内容有:用圆规画圆、了解圆各部分名称、掌握圆的特征等,它是在学生掌握了直线图形的周长和面积计算,并且对圆已有初步认识的基础上进行教学的。从学习直线图形到学习曲线图形,不论是内容本身,还是研究问题的方法,都有所变化,教材通过对圆的研究,使学生初步认识研究曲线图形的基本方法,同时也渗透了曲线图形与直线图形的内在联系。
2、学情分析
在小学阶段,学生的空间观念比较薄弱,动手操作能力比较低,小组合作意识不强,鉴于以前学习的长方形、正方形、三角形等是直线平面图形时,而圆是平面曲线图形,学生在动手操作、合作探究方面会存在一些困难。
3、课标要求
学生的学习过程是一个主动建构的过程,教学中力求发挥学生的主体作用,淡化教师的主观影响,激活学生的已有知识经验,激发学生学习热情,让学生自己在实践中产生问题,自己探究、尝试,修正错误、总结规律,从而使学生在经历、体验和运用中真正感悟知识,主动获取知识。
本节课我以学生亲自动手制作的圆形纸片为主线,采用操作、探究、讨论、发现等教学方法,有目的、有意识地安排了让学生折一折、画一画、指一指、比一比、量一量、议议等数学实践活动,启发学生用眼观察、动脑思考、用耳辨析、小组讨论,让学生主动探索、主动交流、主动提问,并通过多媒体将演示、观察、操作、思维与语言表达结合在一起,使学生在动手中认识圆的各部分名称,理解圆的特征,以及教学圆的画法。
4、教学目标
基于以上的分析,我确定本节课的教学目标是:
(1)通过引导学生观察、实验、猜想等数学活动,认识圆,知道圆的各部分名称。掌握圆的特征,理解直径与半径的关系。初步学会用圆规画圆。
(2)通过创设情境,学生从生活中认识圆,借助动手操作活动,发现规律,培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。
(3)渗透“理论来源于实践又服务于实践”唯物主义观念,通过操作、研讨,培养学生独立探索的能力和创新精神。
【教学重点】认识圆,掌握圆的特征,了解画圆的步骤和方法。
【教学难点】理解圆的半径与直径间的关系。
【教学用具】学生:圆规、剪的圆形纸片、彩笔、直尺、三角板。老师:圆规、圆形纸、直尺、彩笔、课件。
二、教学活动设计
(一)、创设情境,观察积累。
1.课件出示三种车轮不同的赛车:“猜一猜,哪辆赛车会胜出?”(课件演示)、如果让你选乘其中的一辆车,你会乘坐那一辆呢?为什么?除了快之外还有别的原因吗?是什么原因,第三辆车跑的又快又稳?课件显示车轮渐渐变为圆。其实圆在日常生活中有着广泛的应用,你在那儿见过圆?把车轮做成圆形,车子就跑的又快又稳,有什么科学根据吗?在圆形里会藏着那些秘密呢?这节课我们就来学习圆的初步认识。板书:圆的初步认识
2.其实在前面的学习中我们已经接触过圆这种图形,除了圆你还认识那此图形?
生:长方形、正方形、三角形、平形四边形、、梯形、圆柱、长方体、正方体、球体……
你你能给这些图形分分类吗?(课件演示)分成立体图形和平面图形,还有不同的分法吗?把平面图形再分成平面直线图形和平面曲线图形。板书:圆是平面上的曲线图形。
【利用学生比较感兴趣的赛车游戏,让学生去观察,发现其中的数学知识,进而抽出——圆,目的在于激发学生探究新知的浓厚兴趣,并为学习新知积累学生的.知识表象。生活中,你在那见过圆形的物品?使学生感受到生活中处处有数学。回顾以前所学的有关平面图形和立体图形,进行分类,为学习新知作铺垫】。
(二)、组织学生,操作发现。
1.教学圆各部分的名称及关系。
(1)做圆的方法:昨天我给同学们布置了一个任务,让大家在纸上想办法画一个圆,然后把在纸上画好的圆剪下来,谁愿意告诉大家你是怎么做的?(用圆规或用圆形物印)
(2)折纸:拿出你剪的圆形纸片,跟老师一起对折---打开---出现一条折痕,为了看得清楚,用直尺和彩笔画出折痕。换个方向再折再画一条。别停下来,继续折,继续画,比比谁折得快、画得多。
师:还能折吗?画得完吗?你发现了什么?这样的折痕有无数条所有的折痕都相交于圆中心的一点。这一点叫做圆心,一般用字母O表示。什么是圆心?(老师帖圆形纸,板书—)
(3)认识半径、直径及其关系
其实在折痕里还藏有很多有关圆的知识,下面请大家以小组为单位,通过议一议、量一量、看看书、组内交流等办法来寻找圆的知识。比比看哪个小组发现得多。
小组交流汇报有关直径、半径、直径与半径关系的知识。(配合学生汇报,教师进行动画演示。)
小组:我们发现这些折痕都通过了圆心并且两端都在圆上,而且这此折痕长度都相等。你是怎么知道这些折痕都想等的?师:我们把圆里面象这样的线段叫直径,你能用自己的话说一说什么叫直径?直径都有什么特点?(老师课件演示)为什么要说在同一个圆里?(老师用学生中的大小不同的圆举例说明。)
小组:我们组发现从圆心到圆上可以连接无数条线段,这些线段也都相等。师:我们把圆里象这样的线段就叫做半径。你能用自己的话说一说什么叫半径?半径都有什么特点?(老师课件演示)为什么要说在同一个圆里?(老师用学生中的大小不同的圆举例说明。)
)在同一个圆里直径的长度和半径有什么关系呢?猜一猜?要想知道我们猜的对不对,怎么办?(检验)请大家检验自己的猜测是否正确。你是怎样检验的?(课件演示)你觉得这句话里那几个字非常重要?为什么?
图中哪些是半径?哪些是直径?哪些不是?为什么?
【用"情境激趣--自主探究--归纳总结--应用深化"的活动化教学模式,使学生在了解圆各部分名称的基础上,自己发现圆的各部分特征。教师把自己定位于数学学习的组织者、引导者、合作者的位置,通过创设情境、激励等手段,不断引导学生自己发现问题、提出问题、分析问题、解决问题。让学生在主动建构的过程中掌握数学的一些思想方法,发挥学生学习的主动性、独立性、合作性,培养了学生的实践能力和创新意识。】
2.学习画圆的方法
画一个3厘米的圆,并标出圆心、半径和直径。(如果你有困难,可以看课本57页中用圆规画圆的方法,也可以向组内的同学请教)
1.自学并尝试画圆。
2.交流画法。(定圆心、定半径、画圆)
3.了解半径确定圆的大小,圆心确定圆的位置。
4.画一个直径是10厘米的圆。
(三)、引导学生,总结归纳
同学们,这节课有什么收获?
【评析:让学生回顾本堂课的收获,给学生提供了自我感悟、自我评价的时间与空间,有利于培养学生的反思意识。】
三、布置作业
完成课本练习二十的1、2题。
圆的认识教学设计14
教材分析
“圆的认识”是在学生已经认识了长方形、正方形、平行四边形、三角形、梯形等平面图形和初步认识圆的基础上进行学习的,在学生认识了多种平面图形的基础上认识的由曲线围成的平面图形,是小学阶段认识的最后一种常见的平面图形。由于学生已经对圆有了初步的感性认识,所以教材首先从日常生活的常见物体中引出圆,再凭借圆形物体画出圆,然后利用折叠的方法找出圆心,在此基础上,通过测量、比较和交流等活动,引导学生认识圆的半径和直径以及它们的长度之间的关系,从而使学生掌握圆的特征。考虑到小学生的认知水平,教材并没有给出圆的本质特征的描述,但教材通过观察与思考、画一画等活动帮助学生逐步对此加以体会,为学生到中学学习圆的定义提供了感性认识和直观经验。
学情分析
我班学生在低年级已经对圆有了初步认识,加之生活中比较常见的缘故,已经有了一定的感性积累,只是在概念上尚不具体化,同时已经学过了几种常见图形认识,如:长方形、正方形、三角形等,为本课的学习奠定了基础。小学五年级的学生思维处于经验性的逻辑思维,思维的形成与发展需要依赖具体形象的经验材料来理解和抽象事物之间的内在联系,以前学的`几种常见图形是由线段围成的,而圆则是由曲线围成的图形,无论从内容本身,还是研究问题的方法,都有所变化。故此,在教学中要紧密联系学生的实际生活,列举出日常生活、生产中所见到的圆形物体,引出圆的概念,了解圆的特征。圆的相关知识与特征,学生通过自己的操作、探索都能获得,“学”数学就是“做”数学;而学生的心理特点,决定了应当重视引导学生运用多种感官,参与知识的形成过程,因此我借助多媒体课件为自己的探索所得提供科学验证和知识深化、运用的机会。通过认识圆、画圆过程,体验数学的乐趣。
教学目标
1、使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径,能借助工具画圆,能用圆规画指定大小的圆,能应用圆的知识解释一些日常生活的现象。
2、使学生进一步体验圆形与生活的联系,体会圆形物体的美。
教学重点和难点
进一步认识圆的特征及其内在联系,使学生深切体会圆的特征与我们的生活紧密相连,并学会用圆规画圆。
教学过程
一、情境引入
师在黑板上板书“圆”字,问:看到这个字你想到什么?(指名回答)
生:十五的月亮、轮胎、月饼、圆脸蛋、唱片……
师:一个“圆”字让大家浮想联翩,在我们的生活中,圆无处不在,说了这么多的圆,看了这么多的圆,你想不想亲自动手画一个?用你手上的工具动手画一画。问:圆和以前学过的平面图形有什么不同?(长方形、正方形、三角形、平行四边形、梯形都是由线段围成的,而圆是由曲线所围成的。)
二、探究特征
师:刚才大家用各种工具画了圆,但是,大家可能也发现了,有的工具并不好用,而且大多数只能画一种大小的圆,有没有一种工具可以很方便地画各种大小的圆呢?是什么?
生:圆规。
师:对,这个工具就是圆规,圆规就是专门用来画圆的工具(生拿出自己的圆规观察),圆规有一个小圆柄,画圆时手要握住这个小圆柄,还两只脚,一只脚是针尖,另一只脚是用来画圆的笔,画圆时,针尖必须固定在一点,不可移动,两只脚要叉开,手握住小圆柄旋转一周。
师:你能试着用圆规画出一个圆吗?(生画圆)
师:让学生说说自己用圆规画圆的过程(组织交流)
师在黑板上示范画圆,大家看,我们在用圆规画圆的时候要注意一些什么问题?
1、注意圆规这个针尖要固定在一个点上,我们画的图形才够圆。(板书:1、定点)
2、圆规的两只脚之间的长度不能变,否则圆形不能闭合。(板书:2、定长)
3、要用手握住圆规的这个小圆柄旋转一周。(板书:3、旋转)
师:同学们,现在大家运用刚才总结的方法,再在练习本上画一个圆,看看是否画得更顺畅了。(生画圆)
师:现在大家都已经学会画圆了,那么同学们再想想,有没有什么办法让我们画的圆都一样大呢?
师:对!我们可以让两只脚固定,这样就可以画出固定大小的圆了。现在我们先拿出直尺,让针尖和铅笔头之间的距离是3厘米,把圆规固定好,在纸上画一个圆。
师:这个针尖是什么?(圆心)用什么字母表示?(O)圆心,顾名思义就是圆的中心,刚才我们画的两个圆一样大,但位置不同,想一想:圆的位置是由什么来决定的?(圆心)圆心可以确定一个圆的位置,针尖固定在哪个位置,圆就在那个位置。(板书:圆心决定圆的位置)
师:大家看这个刚才画的两脚距离是3厘米的圆,要是有人问这个圆有多大,你们怎么回答呢?(半径3厘米的圆),对这个两脚间的距离就是半径,用什么字母表示?(r)(指导书写r,说说什么是半径,作相应的练习)
师:请你在纸上画一个圆,比原来的圆要小得多。请你在纸上再画一个圆,比原来的圆要大得多。(生画)
师:刚才我们画了大小不同的两个圆,谁来说一说:圆的大小是由什么来决定的?(板书:半径决定圆的大小)
师:同学们,你们再想一想,在同一个圆里,这样的半径可以画几条呢?现在我们来做个小小的竞赛,怎么样?在一分钟内看看哪位同学在同一个圆里画的半径又多又好。(板书:在同一个圆里,有无数条半径)请同学们用尺子来量一量这些半径,它们的长度到底是怎样的。(板书:在同一个圆里,所有的半径都相等。)
师:除了半径以外在圆中还有能决定圆的大小的线段吗?
生:直径。
师画一条直径,讲解:通过圆心并且两端都在圆上的线段,叫做直径,用什么字母表示(d)(做相应的练习)
师:如果我给你们一分钟的时间画直径,想一想:能够画出圆的所有直径吗?(板书:有无数条直径),同样在同一个圆里,所有的直径也相等吗?(板书:所有的直径也相等)
师:请同学们量一量半径和直径,有什么发现?(r=d=2r)
师:我们来做个小游戏,比一比谁的反应比较快。(师报半径,生说直径;师报直径,生说半径。)
师:大家还记得什么是轴对称图形吗?(生拿圆片折,发现交流)
三、巩固练习
师:同学们学得可真不错,大家有没有兴趣接受新的挑战呢?
1、判断题。
(1)在一个圆中,有一个圆心,无数条半径,无数条直径。( )
(2)两端都在圆上的线段叫做直径。( )
(3)半径总是直径的一半。( )
(4)圆心决定圆的位置,半径决定圆的大小。( )
(5)圆内直径是最长的线段。( )
(6)所有的半径都相等,所有的直径都相等。( )
2、欣赏图片。
圆的认识教学设计15
教学内容:九年义务教育人教版六年制小学数学第十一册第106---109页,圆的认识和圆的画法,完成练习二十五。
教学目标:
1.进一步认识圆,知道并理解圆的各部分名称;了解圆的特征,理解直径和半径的关系;学习用圆规画圆,初步能按要求画圆。
2.在数学活动中让学生经历知识再发现、再创造的过程,完成知识的意义赋予,从中培养探究意识、发现能力和解决简单实际问题的能力。
3.体验圆的美,享受成功的喜悦。
教学具准备:圆规、剪刀、水彩笔、白纸、直尺、一副三角尺、绳子、羊的头饰、一元硬币。
教学过程
一、揭题
1.直线图形
师:(出示三角形、长方形、正方形、平行四边形、梯形的平面图)三角形、四边形都是由线段围成的平面图形,线段有什么特点?
生:线段有两个端点,是直的,可以度量。
师:所以我们称三角形、四边形是平面上的直线图形。(板书:直线图形)
2.曲线图形
师:(出示圆的平面图)这是我们学过的……
生:齐说“圆”(板书:圆)
师:相对于线段围成的直线图形,圆是由曲线围成的,所以我们称圆是平面上的一种曲线图形。(板书:曲线图形)
3.引入圆的特征讨论
师:想一想:你周围的物体上哪里有圆?
生:(举例略)
师:同学们一年级时就初步认识过圆,现在都六年级了,你现在知道多少有关圆的知识?
生①:圆是一种优美的图形,建筑设计中应用广泛,如:圆形花坛,圆形装饰图案。生②:圆形便于滚动,所以车轮都是圆的。
生③:一张白纸经折叠后可以剪出一个近似的圆。
生④:(举起自己的圆规)这是圆规,用它可以画圆。
师:车轮为什么是圆的?为什么用圆规可以画出圆来呢?这就需要认识圆有什么特征,下面就来学习“圆的认识”。(板书:圆的认识)
二、新课
1.圆的画法
(1)自由画
师:拿出自己的圆规,在白纸上画一个圆。(师板书:画圆)
生:独立画
师:谁能说说你是怎样画出来的?
生:……(用自己的话描述)
师:谁能用老师的教具圆规上黑板上画圆?(让两名同学上黑板画,提醒其余同学仔细观察他们是怎样画的?)
反馈①:一只手摁住圆规固定的脚,另一只手使圆规的另一只脚旋转,顺利画出圆。
反馈②:教具圆规不好使唤,想固定的那只脚不停移动,用力过猛又使圆规两脚的距离发生变化,无法画出圆。
师:为什么这位同学用圆规能轻巧地画出圆,而另一位同学却画不出圆呢?
(点拨总结出画圆的步骤:“分开”、“固定”、“旋转”。分别板书)
2.认识圆心
师:(以黑板上学生画的圆为例)用圆规画圆时针尖固定的这一点(用彩色粉笔点出)叫圆心(板书“圆心”)一般用字母O来表示(标出:O)。请同学们在自己画的圆上点出圆心,标出字母O。
生:独立完成。
3.认识半径
师:举起你们刚才画的圆,互相看一下,都一样大吗?
生:不一样大。
师:为什么大的大,小的小,与什么有关?
生:与圆规两脚分开的大小有关。
师:你们的意思是圆规两脚间的距离长时,画出的圆大,两脚间的距离短时,画出的圆就小。请在你的圆上画出一条表示两脚间距离的线段。
生:独立画。
师:(以黑板上学生画的圆为例)请同学们仔细看,圆规的一只脚固定在圆心O,当另一只脚旋转到A点时,圆规两脚间的距离是OA(画出线段OA);当另一只脚旋转到B点时,两脚间的距离是OB(再画出线段OB)
问:线段OA和OB相等吗?
生:相等。
师:你是凭观察得出的,那怎样验证呢?
生:测量。
师:指名上黑板测量OA与OB的长并报告测量结果。
生:确实一样长。
师:在这个圆的曲线上,像A、B这样的点可以找出多少个?
生:无数个。
师:表示两脚间的距离的线段可以画多少条?设想一下它们的长度如何?
生:无数条且长度都相等(板书)
师:我们刚才研究的画圆时圆规两脚间的距离就叫做圆的半径(板书:半径)一般用字母r来表示。给你们刚才画的半径标上r。
师;半径这条线段的'一个端点在哪里,另一个呢?
生:一个端点在圆心,另一个端点在圆的曲线上。(板书:圆心圆的曲线上)
师:那什么叫半径呢?
生:用自己的话说(师完成半径定义的板书)
师:同一个圆里,半径有什么特点?
生:无数条且长度都相等。
4.认识直径
师:把自己画的圆剪下来
生:独立剪
师:示范对折,打开,出现一条折痕,用食指摸折痕;换个方向再重复一次。
生:在教师示范下同步进行。
师:像这样再重复折几次
生:独立对折、打开、摸折痕。
师:你折了好多次,可以发现什么?
反馈①:每折一次出现一条折痕。
追问:你折了几次,出现了几条折痕,与他不一样的呢?像这样的折痕在你的圆里能再折出来吗?
反馈②:对折后圆的两边能完全重合,圆被平均折成两份。
反馈③:每折一次出现一条折痕,每条折痕都是圆上的线段。
反馈④:这些折痕相交于圆心。
追问:你对折出几条折痕,谁折出的折痕比他多,他说的结论正确吗?在你的圆里,这样的折痕可以折出多少条?这个结论正确吗?
反馈⑤:这些折痕都一样长。
追问:怎样验证?
生:测量
师:量出你圆里每条折痕的长度
生:汇报结果。(指导学生说:“在我的圆里,……”)
师:刚才说了这样的折痕有无数条,所以可以怎样下结论?
生:同一个圆里,所有的折痕长度都相等。
师:谁能给“折痕”起个名字?
生:直径(板书:直径)
师:直径一般用字母d来表示,在自己的圆里给折痕画出一条直径,标上字母d。
生:完成
师:同一个圆里,直径有多少条,长度有什么特点?
生:略
师:直径这条线段,它通过了…?它的两个端点分别在哪里?
生:通过圆心,两个端点都在圆的曲线上。(完成直径定义的相应板书)
反馈⑥:这些折痕的长度是半径长度的2倍或直径的长度是半径的2倍。
师追问:你是怎样得出这个结论的,说说道理。
生①:直径通过圆心,以圆心为界,可以把直径分成两条半径。
生②:在我的圆里,经过测量可以验证这个发现,我的圆里直径的长度都是□厘米,半径的长度都是□厘米,所以说直径是半径长度的2倍。
师:换过来说,半径的长度就是直径的……。生:略师:写出字母公式:d=2rr=d2,注意强调“同一个圆里”。
(以上6点反馈,学生说出多少就处理多少,先说出哪一点,就先处理那一点。)
三、巩固
1.第108页“做一做”。用彩色笔标出下面各圆的半径和直径。
2.第109页练习二十五第3题。已知半径长求直径;已知直径长求半径。
(此项练习放在直径与半径长度关系揭示后进行)
3.学习按要求画圆。完成第108页“做一做”(画半径是3厘米的圆)。
教师示范,引导学生逐步完成。
(1)在作业本适当的地方点一个点做圆心,要考虑上、下、左、右的间距。
(2)以圆心为起点,向右水平方向画一条3厘米长的线段。
(3)圆规一脚固定在圆心,另一只脚在3厘米长线段的终点处,然后绕圆心旋转。
(4)标出字母o、r、d。
4.第109页练习二十五第2题。为什么车轮都要做成圆的,车轴装在哪里?
与圆的特征有关。因为圆曲线上的每一点到圆心的距离相等,车轴装在圆心,车轴到地面的距离永远是半径,这样车轮行驶平稳。(配图:如果车轮在水平的路面上行驶,车轮运行时车轴移动形成的直线(轨迹)与地面平行)
5.阅读第109页第5题,独立填书。
想:怎样测量1元硬币的直径?
让学生在实物投影上边演示边说。
【圆的认识教学设计】相关文章:
“圆的认识”教学设计04-27
《圆认识》教学设计07-06
《圆的认识》教学设计02-16
《圆的认识》教学设计08-21
圆的认识教学设计12-26
《圆的认识》教学设计15篇02-19
圆的认识教学设计15篇12-31
圆的认识教学设计通用15篇01-19
圆的认识教学设计(集锦15篇)01-23