- 相关推荐
万有引力教学设计
作为一无名无私奉献的教育工作者,通常会被要求编写教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么问题来了,教学设计应该怎么写?以下是小编整理的万有引力教学设计,希望能够帮助到大家。
万有引力教学设计1
一、教学目标
1、了解万有引力定律得出的思路和过程、
2、理解万有引力定律的含义并会推导万有引力定律、
3、知道任何物体间都存在着万有引力,且遵循相同的规律、
二、教学重点
1、万有引力定律的推导、
2、万有引力定律的内容及表达公式、
三、教学难点
1、对万有引力定律的理解、
2、使学生能把地面上的物体所受的重力与其他星球与地球之间存在的引力是同性质的力联系起来、
四、教学方法
1、对万有引力定律的推理——采用分析推理、归纳总结的方法、
2、对疑难问题的处理——采用讲授法、例证法、
五、教学步骤
导入新课
请同学们回忆一下上节课的内容,回答如下问题:
1、行星的运动规律是什么?
2、开普勒第一定律、第三定律的内容?
同学们回答完以后,老师评价、归纳总结、
同学们回答得很好,行星绕太阳运转的轨道是椭圆,太阳处在这个椭圆的一个焦点上,那么行星为什么要这样运动?而且还有一定的规律?这类问题从17世纪就有人思考过,请阅读课本,这个问题的答案在不同的时代有不同的结论,可见,我们科学的研究要经过一个相当长的艰巨的过程、
新课教学
1、同学们阅读完以后,知道到了牛顿时代的一些科学家,如胡克、哈雷等,对这一问题的认识更进了一步,把地面上的运动和天体的运动统一起来了、事实上,行星运动的椭圆轨道离心率很接近于1,我们把它理想化为一个圆形轨道,这样就简化了问题,易于我们在现有认知水平上来接受、
根据圆周运动的条件可知行星必然受到一个太阳给的力、牛顿认为这是太阳对行星的引力,那么,太阳对行星的引力F应该为行星运动所受的向心力,即:
再根据开普勒第三定律代入上式
可得到:
其中m为行星的质量,r为行星轨道半径,即太阳与行星的距离、由上式可得出结论:太阳对行星的引力跟行星的质量成正比,跟行星到太阳的距离的二次方成反比、
即:F∝
根据牛顿第三定律:太阳吸引行星的力与行星吸引太阳的力是同性质的相互作用力、既然太阳对行星的引力与行星的质量成正比,那么行星对太阳也有作用力,也应与太阳的质量M成正比,即:
F∝
用文字表述为:太阳与行星之间的引力,与它们质量的乘积成正比,与它们的距离的平方成反比、
用公式表述:
公式中的G是一个常数,叫万有引力常量、
进而牛顿还研究了月地间的引力、许多不同物体间的作用力都遵循上述引力规律,于是他把这一规律推广到自然界中任意两个物体间,即具有划时代意义的万有引力定律、
2、万有引力定律:
(1)内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的.质量的乘积成正比,跟它们的距离的二次方成反比、
(2)公式:
(3)疑问:在日常生活中,我们各自之间或人与物体间,为什么都对这种作用没有任何感觉呢?
这是因为一般物体的质量与星球的质量相比太小了,它们之间的引力太小了,所以我们不易感觉到、下一节课的卡文迪许的精巧的扭秤实验将为我们验证、
(4)各物理量的含义及单位
r表示两个具体物体相距很远时,物体可以视为质点、如果是规则形状的均匀物体,r为它们的几何中心间的距离、单位为“米”、
G为万有引力常量,G=6、67×10-11,单位为Nm2/kg2、这个引力常量的出现要比万有引力定律晚一百多年哪!是英国的物理学家卡文迪许测出来的,我们下节课就要学习、
(5)扩展思路
牛顿想验证地面上的物体的重力与月地间、行星与太阳间的引力是同种性质的力,他做了著名的“月——地”检验,请同学们阅读课本第105页有关内容、然后归纳一下他的思路、オ①如果重力与星体间的引力是同种性质的力,都与距离的二次方成反比关系,那么月球绕地球做近似圆周运动的向心加速度就应该是重力加速度的1/3600、
牛顿计算了月球的向心加速度,结果证明是对的
②如果我们已知地球质量为5、89×1024kg、地球半径为6、37×106m、同学们试计算一下月球绕地球的向心加速度是多大?
同学们通过计算验证,
③为了验证地面上的重力与月球绕地球运转的向心力是同一性质的力,还提出一个理想实验:设想一个小月球非常接近地球,以至于几乎触及地球上最高的山顶,那么使这个小月球保持轨道运动的向心力当然就应该等于它在山顶处所受的重力、如果小月球突然停止做轨道运动,它就应该同山顶处的物体一样以相同速度下落、如果它所受的向心力不是重力,那么它就将在这两种力的共同作用下以更大的速度下落,这是与我们的经验不符的所以,是同性质的力、
(6)万有引力定律发现的重要意义
万有引力定律的发现,对物理学、天文学的发展具有深远的影响、它把地面上物体运动的规律和天体运动的规律统一了起来、在科学文化发展上起到了积极的推动作用,解放了人们的思想,给人们探索自然的奥秘建立了极大的信心,人们有能力理解天地间的各种事物、
六、巩固练习(用投影片出示题目)
1、要使两物体间的万有引力减小到原来的1/4,下列办法不可采用的是
獳、使两物体的质量各减小一半,距离不变
B、使其中一个物体的质量减小到原来的1/4,距离不变
C、使两物体间的距离增为原来的2倍,质量不变
D、距离和质量都减为原来的1/4
2、火星的半径是地球半径的一半,火星的质量约为地球质量的1/9;那么地球表面50kg的物体受到地球的吸引力约是火星表面同质量的物体受到火星吸引力的倍、
3、两个大小相同的实心小铁球紧靠在一起时,它们之间的万有引力为F、若两个半径为原来2倍的实心大铁球紧靠在一起,则它们之间的万有引力为
獳、4F獴、2F獵、8F獶、16F
参考答案:
1、D2、2、253、D
七、小结(用投影片出示内容)
通过这节课的学习,我们了解并知道:
1、得出万有引力定律的思路及方法、
2、任何两个物体间存在着相互作用的引力的一般规律:即
其中G为万有引力常量,r为两物间的距离、
八、板书设计
第二节万有引力定律
万有引力教学设计2
一、活动目标
1、通过演示、实验等方法,对物体下落现象产生兴趣。
2、观察、认识物体下落的必然性。
二、活动准备
1、“轱辘轱辘”学教具、“美丽下落路”学教具。
2、沙包、毛绒玩具、纸球、棉花等。
三、活动过程
(一)发现物体会下落的特征。
1、玩“轱辘轱辘”。
①幼儿玩“轱辘轱辘”,感受物体往下落。
把手放开后瓶子会怎么样?(会下落)瓶子落到哪里?(落到地上)
T:我们不动瓶子,它会自己上来吗?(不会)怎么让它上来?(摇动把手)
放开手后会怎么样?(落到地上)
②师幼发现:轱辘上吊着的物体是会往下落的。
2、再次探索
①提供多种材料供幼儿自由探索。(沙包、毛绒玩具、纸球、棉花等)
②在探索的过程中,老师提示:
先将这些物体拿在手中,手放开后会怎么样?它们都落到哪里去了?
将它们轻轻地往上抛后,它们又落到了那里?
将它们重重地往上抛后,它们又落到了那里?
③师幼发现:物体无论是放开手后、轻轻地、重重地往上抛,最后物体都落到了地上。
3、探讨生活中看到的物体下落现象。
①观看视频:水往下流、苹果往下落
②幼儿列举生活中看到的物体下落的现象。
③师幼发现:生活中所有的物体都是往下落的。
4、师幼共同小结:
我们的地球是有吸引力的,把物体都往下吸。
(二)玩“美丽下落路”
1、出示“美丽下落路”,教师示范将颜料倒入盒中,请幼儿猜一猜颜料会往那里走。
T:老师将颜料舀入盒子中,旋转盒子,你们说颜料会往哪里走?(不管怎样转动盒,颜料都是往下流的,)为什么?(因为我们的.地球有吸引力)
2、幼儿自由玩“美丽下落路”。
T:孩子们,你们真是太聪明了,我们用地球有吸引力的原理来创作一幅神奇有趣的“美丽下落路”吧。
3、幼儿自主创作,教师巡回指导。
(三)结束
原来地球的吸引力还能让我们创作出这么美丽的作品,我们把它们带回活动室展示出来吧。
万有引力教学设计3
【学习目标】
1、了解万有引力定律的伟大成就,能测量天体的质量及预测未知天体等
2、熟练掌握应用万有引力定律测天体质量的思路和方法。
3、体会万有引力定律在天文学史上取得的巨大成功,激发学科学习激情和探索精神。
【学习重难点】
1、重点:测天体的质量的思路和方法
2、难点:物体的重力和万有引力的区别和联系。
【学习方法】
自主学习、合作交流、讲授法、练习法等。
【课时安排】
1课时
【学习过程】
一、导入新课:
万有引力定律发现后,尤其是卡文迪许测出引力常量后,立即凸显出定律的实用价值,能利用万有引力定律测天体的质量,科学性的去预测未知的天体!这不仅进一步证明了万有引力定律的正确性,而且确立了万有引力定律在科学史上的地位,有力地树立起人们对年轻的物理学的尊敬。
二、多媒体展示问题,学生带着问题学习教材,交流讨论。
1、说一说物体的重力和万有引力的区别和联系
2、写出应用万有引力定律测天体质量的思路和方法。
3、简述“笔尖下发现的行星”的天文学史事,该史事说明了什么?
三、师生互动参与上述问题的学习与讨论
1、学生互动学习交流发言。
2、教师指导、帮助学生进一步学习总结(结合课件展示)。
(1)万有引力和物体的重力
地球表面附近的物体随地球的自转而做匀速圆周运动,受力分析如图(1)
1)在两极点:
2)除两极点外:万有引力的一个分力提供向心力,
另外一个分力就是物体受到的重力,由于提供
向心力的力很小(即使在赤道上),物体的重力
的数值和万有引力相差很小。
3)在赤道处:
显然,地球表面附近随纬度的增加,重力加速度值略微增大。若忽略地球自转的影响,物体受到的万有引力约为物体在该处受到的重力,不予考虑二者的差别。
物体在距离地心距离为r(r>R)处的加速度为ar:
则:
若忽略地球自转的影响,物体在距离地心距离为r处的重力加速度为gr:
则:
(2)“科学真是迷人”巧测地球的质量
若不考虑地球自转的影响:,则:
地面的重力加速度g和地球半径R在卡文迪许之前就已知道,卡文迪许测出了引力常量G,就可以算出地球的质量M。这在当时看来就是一个科学奇迹。难怪著名文学家马克·吐温满怀激情地说:“科学真是迷人。根据零星的事实,增添一点猜想,竟能赢得那么多收获!”
(3)计算天体的质量
1)计算太阳的质量
核心思路方法:万有引力提供行星做匀速圆周运动的向心力。
对行星由牛顿第二定律得:可得:
2)计算其他中心天体的质量:
核心思路方法:万有引力提供小星体绕中心天体做匀速圆周运动的向心力。
对小星体由牛顿第二定律得:
可得:
思考与讨论:如何进一步测中心天体的密度?
中心天体的体积:,中心天体的密度:
联立以上各式得:。
若,则:这是很重要的一个结论。
(4)发现未知天体:
1)笔尖下发现海王星
1781年人们发现矛盾亚当斯和勒维耶计算并预言伽勒发现证实
2)哈雷彗星的“按时回归”
1705年英国天文学家哈雷根据万有引力定律计算了一颗著名彗星的轨道并正确预言了它的回归。
3)海王星的发现和哈雷彗星的“按时回归”不仅进一步证实了万有引力定律的正确性,同时也确立了万有引力定律在科学史上的.地位,也成为科学史上的美谈。科学定律的可预测性体现的淋漓尽致!
四、随堂练习:
例1:开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3、84×108m,月球绕地球运动的周期为2、36×106S,试计算地球的质量M地。(G=6、67×10-11Nm2/kg2,结果保留一位有效数字)
例2:20xx年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,命名为MCG6-30-15,由于黑洞的强大引力,周围物质大量掉入黑洞,假定银河系中心仅此一个黑洞,已知太阳系绕银河系中心匀速运转,下列哪一组数据可估算该黑洞的质量()
A、地球绕太阳公转的周期和速度
B、太阳的质量和运行速度
C、太阳的质量和到MCG6-30-15的距离
D、太阳运行速度和到MCG6-30-15的距离
例3:地球可视为球体,其自转周期为T,在赤道上用弹簧秤测得某物体的重量是在两极处测得同一物体重量的0、9倍,已知引力常量为G,试求地球的平均密度。
例4:某星球的质量是地球质量的9倍,半径是地球半径的一半,若从地球上平抛一物体射程为60m,则在该星球上以同样的初速度,同样的高度平抛物体,其射程是
五、学习目标的自我评价和学习小结
本节课首先认识了万有引力和重力间的差异,后学习了应用万有引力定律测天体质量的两种基本方法:1)和2),最后见识了万有引力定律在探索宇宙过程中发挥的重要作用和地位。
六、课后作业:
教材P432、3、4
万有引力教学设计4
一、课题:
万有引力定律
二、课型:
概念课(物理按教学内容课型分为:规律课、概念课、实验课、习题课、复习课)
三、课时:
1课时
四、教学目标
(一)知识与技能
1、理解万有引力定律的含义并会用万有引力定律公式解决简单的引力计算问题。
2、知道万有引力定律公式的适用范围。
(二)过程与方法:在万有引力定律建立过程的学习中,学习发现问题、提出问题、猜想假设与推理论证等方法。
(三)情感态度价值观
1、培养学生研究问题时,抓住主要矛盾,简化问题,建立理想模型的处理问题的能力。
2、通过牛顿在前人的基础上发现万有引力定律的思考过程,说明科学研究的长期性,连续性及艰巨性,提高学生科学价值观。
五、教学重难点
重点:万有引力定律的内容及表达公式。
难点:1、对万有引力定律的理解;2、学生能把地面上的物体所受重力与其他星球与地球之间存在的引力是同性质的力联系起来。
六、教学法:
合作探究、启发式学习等
七、教具:
多媒体、课本等
八、教学过程
(一)导入
回顾以前对月-地检验部分的学习,明确既然太阳与行星之间,地球与月球之间、地球对地面物体之间具有与两个物体的质量成正比,跟它们的距离的二次方成反比的引力。这里进一步大胆假设:是否任何两个物体之间都存在这样的力?
引发学生思考:很可能有,只是因为我们身边的'物体质量比天体的质量小得多,我们不易觉察罢了,于是我们可以把这一规律推广到自然界中任意两个物体间,即具有划时代意义的万有引力定律、然后在学生的兴趣中进行假设论证。
(二)进入新课
学生自主阅读教材第40页万有引力定律部分,思考以下问题:
1、什么是万有引力?并举出实例。
教师引导总结:万有引力是普遍存在于宇宙中任何有质量的物体之间的相互吸引力。日对地、地对月、地对地面上物体的引力都是其实例。
2、万有引力定律怎样反映物体之间相互作用的规律?其数学表达式如何?并注明每个符号的单位和物理意义。
教师引导总结:万有引力定律的内容是:宇宙间一切物体都是相互吸引的。两物体间的引力大小,跟它的质量的乘积成下比,跟它们间的距离平方成反比、式中各物理量的含义及单位:F为两个物体间的引力,单位:N、m1、m2分别表示两个物体的质量,单位:kg,r为两个物体间的距离,单位:m。G为万有引力常量:G=6、67×10-11N·m2/kg2,它在数值上等于质量是1Kg的物体相距米时的相互作用力,单位:N·m2/kg2、
3、万有引力定律的适用条件是什么?
教师引导总结:只适用于两个质点间的引力,当物体之间的距离远大于物体本身时,物体可看成质点;当两物体是质量分布均匀的球体时,它们间的引力也可直接用公式计算,但式中的r是指两球心间的距离。
4、你认为万有引力定律的发现有何深远意义?
教师引导总结:万有引力定律的发现有着重要的物理意义:它对物理学、天文学的发展具有深远的影响;它把地面上物体运动的规律和天体运动的规律统一起来;对科学文化发展起到了积极的推动作用,解放了人们的思想,给人们探索自然的奥秘建立了极大信心,人们有能力理解天地间的各种事物。
(三)深化理解
在完成上述问题后,小组讨论,学生在教师的引导下进一步深化对万有引力定律的理解,即:
1、普遍性:万有引力存在于任何两个物体之间,只不过一般物体的质量与星球相比太小了,他们之间的万有引力也非常小,完全可以忽略不计。
2、相互性:两个物体相互作用的引力是一对作用力与反作用力。
3、特殊性:两个物体间的万有引力和物体所在的空间及其他物体存在无关。
4、适用性:只适用于两个质点间的引力,当物体之间的距离远大于物体本身时,物体可看成质点;当两物体是质量分布均匀的球体时,它们间的引力也可直接用公式计算,但式中的r是指两球心间的距离。
(四)活动探究
请两名学生上讲台做个游戏:两人靠拢后离开三次以上。创设情境,加深学生对本节知识点的印象和运用,请一位同学上台展示计算结果,师生互评。
1、请估算这两位同学,相距1m远时它们间的万有引力多大?(可设他们的质量为50kg)
解:由万有引力定律得:代入数据得:F1=1、7×10-7N
2、已知地球的质量约为6、0×1024kg,地球半径为6、4×106m,请估算其中一位同学和地球之间的万有引力又是多大?
解:由万有引力定律得:代入数据得:F2=493N
3、已知地球表面的重力加速度,则其中这位同学所受重力是多少?并比较万有引力和重力?
解:G=mg=490N。
比较结果为万有引力比重力大,原因是因为在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力。
(五)课堂小结
小结:学生在教师引导下认真总结概括本节内容,完成多媒体呈现的知识网络框架图,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,进行生生互评。
(六)布置作业
作业:完成“问题与练习”
九、板书设计
xx
万有引力教学设计5
一、内 容 人教版普通高中课程标准试验教科书物理必修2第六章第4节《万有引力理论的成就》
二、教学分析
1.教材分析
本节课是《万有引力定律》之后的一节,内容是万有引力在天文学上的应用。教材主要安排了“科学真是迷人”、“计算天体质量”和“发现未知天体”三个标题性内容。学生通过这一节课的学习,一方面对万有引力的应用有所熟悉,另一方面通过卡文迪许“称量地球的质量”和海王星的发现,促进学生对物理学史的学习,并借此对学生进行情感、态度、价值观的学习。
2.教学过程概述
本节课从宇宙中具有共同特点的几幅图片入手,对万有引力提供天体圆周运动的向心力进行了复习引入万有引力在天体运动中有什么应用呢?接下来,通过“假设你成为了一名宇航员,驾驶宇宙飞船……发现前方未知天体”,围绕“你有什么办法可以测出该天体的质量吗”全面展开教学。密度的计算以及海王星的发现自然过渡和涉及。在教材的处理上,既立足于教材,但不被教科书所限制,除了介绍教科书中重要的基本内容外,关注科技新进展和我国天文观测技术的发展,时代气息浓厚,反映课改精神,着力于培养学生的科学素养。
三、教学目标
1.知识与技能
(1)通过 “计算天体质量”的学习,学会估算中数据的近似处理办法,学会运用万有引力定律计算天体的质量;
(2)通过“发现未知天体”,“成功预测彗星的回归”等内容的学习,了解万有引力定律在天文学上的重要应用。
2.过程与方法
运用万有引力定律计算天体质量,体验运用万有引力解决问题的基本思路和方法。
3.情感、态度、价值观
(1)通过“发现未知天体”、“成功预测彗星的回归”的学习,体会科学定律在人类探索未知世界的作用;
(2)通过了解我国天文观测技术的发展,激发学习的兴趣,养成热爱科学的情感。
四、教学重点
1.中心天体质量的计算;
2. “称量地球的质量”和海王星的发现,加强物理学史的教学。
五、教学准备 实验器材、PPT课件等多媒体教学设备
六、教学过程
(一)、图片欣赏复习引入
通过几张宇宙图片的欣赏,学生体验宇宙中螺旋的共同特点,万有引力提供向心力是天体都遵循的规律。那么,万有引力定律在天体运动中还有哪些具体的应用呢?让我们一起进入本章《万有引力理论的'成就》的学习。
(二)、创设情境 解决中心问题
情境创设:假如你成为了一名宇航员,驾驶宇宙飞船航行在宇宙深处,突然,前方一美丽的天体出现在你的面前。你先关闭了宇宙的发动机,然后飞船刚好绕美丽天体做了完美的圆周运动,绕行一周后,飞船就平稳的降落在了星球上。
合作讨论:你有什么办法可以测得这一神秘天体的质量吗?
(学生通过小组探究,教师巡回指导,形成自己本组的意见,由小组选出的代表来向全班展示自己思考的结果。)
小组代表讲解展示:
思路一:测出宇宙飞船绕行一周的时间和轨道半径,根据万有引力提供向心力,
即:
从而得出星球(中心天体)的质量
思路二:根据宇航员降落在星球表面上后,重力近似等于万有引力,
即: 得出
在思路二完成之后,紧接着问题:如何测得星球表面的重力加速度g呢?
(学生讨论回答,现场教师展示借助小球的自由落体运动,通过现代技术“传感器”现场完成重力加速度的测量。)
设计说明: 1.通过“学生成为宇航员驾驶宇宙飞船发现未知天体”的情境创设,围绕”如何测得星球的质量?”这一中心问题展开学生的讨论活动,在让学生觉得有趣味的同时,通过小组讨论、合作学习来促使学生创造性的思考、解决本节课的中心问题。2.多媒体和现代测量方法——传感器让学生感受技术带来的便捷。
(三)、物理学史 展现人文魅力
启示:一旦测出了引力常量G,那么就可以利用公式 得到地球的质量了。
1798年,卡文迪许通过自己设计的扭秤实验,成功得到了引力常量的值。因此卡文迪许把自己的实验说成是“称量地球的重量”,是不无道理的。
而正是这段故事,让一个外行人、著名文学家马克·吐温满怀激情的说:“科学真是迷人。根据零星的事实,增添一点猜想,竟能赢得那么多的收获!”
(四)、课堂延伸——如何得到这一天体的密度?
设计说明:在这一问题中,老师提示了球体的体积公式,然后就把时间交给学生了。学生进行了积极的演算,可得到的答案有两种,一种是带有半径的,而另一种则是把半径约分掉的 。“为什么半径可以约掉呢?”这一问题又再一次促进了学生的思考。而这也保证了课堂的开放性。
(五)、发现未知天体
视频:“海王星的发现”,——展现科学发现的足迹,注重学生进行科学态度和情感。
诺贝尔物理学奖获得者、物理学家冯劳厄说:“没有任何东西像牛顿引力理论对行星轨道的计算那样,如此有力的树立起人们对年轻物理学的尊敬。从此以后,这门自然科学成了巨大的精神王国……”
(六)、课堂小结与反馈 简单回顾本节课的教学内容
七、板书设计: 第4节《万有引力理论的成就》
一、 图片欣赏,引入新课
二、 测中心天体的质量
三、 卡文迪许——人文魅力
四、 应用
1.测天体密度
2.发现未知天体
八、教学反思:
本节课在教学设计上创造性的使用教材,通过“学生成为宇航员驾驶宇宙飞船发现未知天体”的情境创设,让学生在极大的趣味中完成了本节中心内容的教学。学生的学习过程脉络清晰。物理学家的人文魅力学生也有一定的感知。
万有引力教学设计6
【教学目标】
(一)知识与技能
1.了解万有引力定律在天文学上的重要应用。
2.会用万有引力定律计算天体质量。
3.理解并运用万有引力定律处理天体问题的思路和方法。
(二)过程与方法
1.通过万有引力定律推导出计算天体质量的公式。
2.了解天体中的知识。
(三)情感、态度与价值观
体会万有引力定律在人类认识自然界奥秘中的巨大作用,让学生懂得理论来源于实践。
【教学重点】
1.行星绕太阳的运动的向心力是由万有引力提供的。
2.会用已知条件求中心天体的质量。
【教学难点】
根据已有条件求中心天体的质量。
教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。
【教学工具】
课件、计算机、地球仪、投影仪等多媒体教学设备。
【教学过程】
一、引入新课
教师活动:上节我们学习了万有引力定律的有关知识,现在请同学们回忆一下,万有引力定律的内容及公式是什么?公式中的G又是什么?G的测定是谁完成的?
学生活动:思考并回答上述问题:
内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比。
公式:F=G.
公式中的G是引力常量,它在大小上等于质量为1 kg的两个物体相距1 m时所产生的引力大小,经测定其值为6.67×10—11 N·m2/kg2。G的测定是由卡文迪许完成的。
教师活动:(播音部分)牛顿(1643—1727)是英国著名的物理学家、数学家和天文学家,是十七世纪最伟大的科学巨匠。牛顿一生对科学事业所做的贡献,遍及物理学、数学和天文学等领域。牛顿在物理学上最主要的成就,是创立了经典力学的`基本体系,对于光学,牛顿致力于光的颜色和光的本性的研究,也作出了重大贡献。牛顿在数学方面,总结和发展了前人的工作,提出了“流数法”,建立了二项式定理,创立了微积分。在天文学方面,牛顿发现了万有引力定律,创制了反射望远镜,并且用它初步观察到了行星运动的规律。
上面用了两个字“发现”,不是发明!正如幼儿园有一个小朋友造句:我爸爸发现了我的妈妈,然后发明了我。
万有引力发现后,再经过了一百多年,才确定引力常量。卡文迪许扭秤的主要部分是一个轻而坚固的T型架,倒挂在一根金属丝的下端。T形架水平部分的两端各装一个质量是m的小球,T形架的竖直部分装一面小平面镜M,它能把射来的光线反射到刻度尺上,这样就能比较精确地测量金属丝的扭转。他测定了引力常量。这也提供了我们测量微小物体质量的方法。古代,曹操的儿子曹冲利用浮力称出了大象的质量。那我们现在有没有可能利用已知的知识来称地球呢?
二、进行新课
(一)“科学真实迷人”
教师活动:引导学生阅读教材“科学真实迷人”部分的内容,思考问题[投影出示]:
1.推导出地球质量的表达式,说明卡文迪许为什么能把自己的实验说成是“称量地球的重量”?
2.设地面附近的重力加速度g=9.8m/s2,地球半径R =6.4×106m,引力常量G=6.67×10-11 Nm2/kg2,试估算地球的质量。
学生活动:阅读课文,推导出地球质量的表达式,在练习本上进行定量计算。
教师活动:由于地球自转非常慢,一天只转了一圈,所以对应的自转偏向力很小。在这里,我们忽略不计。投影学生的推导、计算过程,一起点评。
kg重力加速度与高度的变化:若物体静止在距离地面高为h的高空
(二)计算天体的质量
教师活动:(课件展示太阳系里面的星体的美丽图片),《万有引力理论的成就》
教学设计
引导学生阅读教材“天体质量的计算”部分的内容,同时考虑下列问题[投影出示]:
1.应用万有引力定律求解天体质量的基本思路是什么?
2.求解天体质量的方程依据是什么?
学生活动:学生阅读课文第一部分,从课文中找出相应的答案。
1.求解天体质量的基本思路是:根据环绕天体的运动情况,求出其向心加速度,然后根据万有引力充当向心力,进而列方程求解.
2.从前面的学习知道,天体之间存在着相互作用的万有引力,而行星(或卫星)都在绕恒星(或行星)做近似圆周的运动,而物体做圆周运动时合力充当向心力,故对于天体所做的圆周运动的动力学方程只能是万有引力充当向心力,这也是求解中心天体质量时列方程的根源所在。
教师活动:引导学生深入探究
请同学们结合课文知识以及前面所学匀速圆周运动的知识,加以讨论、综合,然后思考下列问题[投影出示]。学生代表发言。
1.天体实际做何运动?而我们通常可认为做什么运动?
2.描述匀速圆周运动的物理量有哪些?
3.根据环绕天体的运动情况求解其向心加速度有几种求法?
4.应用天体运动的动力学方程──万有引力充当向心力求出的天体质量有几种表达式?各是什么?各有什么特点?
5.应用此方法能否求出环绕天体的质量?
学生活动:讨论,得出答案。学生代表发言。
1.天体实际运动是沿椭圆轨道运动的,而我们通常情况下可以把它的运动近似处理为圆形轨道,即认为天体在做匀速圆周运动。
2.在研究匀速圆周运动时,为了描述其运动特征,我们引进了线速度v,角速度ω,周期T三个物理量。
3.根据环绕天体的运动状况,a心=4π2r/T2
4.应用天体运动的动力学方程──万有引力充当向心力,结合圆周运动向心加速度方程,即
(3)F引=G=F心=ma心=m
即:G=m ③
从上述动力学方程的表述中,可得到相应的天体质量表达形式:
M=4π2r3/GT2.
同理可得:M=v2r/G 或者M=ω2r3/G.
上述三种表达式分别对应在已知环绕天体的线速度v,角速度ω,周期T时求解中心天体质量的方法。
以上各式中M表示中心天体质量,m表示环绕天体质量,r表示两天体间距离,G表示引力常量。
5.从以上各式的推导过程可知,利用此法只能求出中心天体的质量,而不能求环绕天体的质量,因为环绕天体的质量同时出现在方程的两边,已被约掉。
师生互动:
从上面的学习可知,在应用万有引力定律求解天体质量时,只能求解中心天体的质量,而不能求解环绕天体的质量。而在求解中心天体质量的三种表达式中,最常用的是已知周期求质量的方程。因为环绕天体运动的周期比较容易测量。
教师活动:投影例题:某宇航员驾驶航天飞机到某一星球,他使航天飞机贴近该星球附近飞行一周,测出飞行时间为4.5?103s,则该星球的平均密度是多少?
学生活动:在练习本上分析计算,写出规范解答:
分析:航天飞机绕星球飞行,万有引力提供向心力,所以:
教师活动:投影学生求解过程,点评。
(三)发现未知天体
教师活动:请同学们阅读课文“发现未知天体”部分的内容,考虑以下问题[投影出示]:
教学设计
1.应用万有引力定律除可估算天体质量外,还可以在天文学上有何应用?
2.应用万有引力定律发现了哪些行星?
学生活动:阅读课文,从课文中找出相应的答案:
1.应用万有引力定律还可以用来发现未知的天体。
2.海王星、冥王星就是应用万有引力定律发现的。
教师活动:投影海王星照片与它的地貌照片
引导学生深入探究:
人们是怎样应用万有引力定律来发现未知天体的?发表你的看法。
学生活动:讨论并发表见解。
人们在长期的观察中发现天王星的实际运动轨道与应用万有引力定律计算出的轨道总存在一定的偏差,所以怀疑在天王星周围还可能存在有行星,然后应用万有引力定律,结合对天王星的观测资料,便计算出了另一颗行星的轨道,进而在计算的位置观察新的行星。
教师点评:万有引力定律的发现,为天文学的发展起到了积极的作用,用它可以来计算天体的质量,同时还可以来发现未知天体.
三、课堂总结、点评
教师活动:
1.处理天体运动问题的关键是:万有引力提供做匀速圆周运动所需的向心力。
2.忽略地球自转,物体所受重力等于地球对物体的引力。
学生活动:认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,看谁的更好,好在什么地方。
教师要放开,让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架。
【教学体会】
思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。学生素质的培养就成了镜中花,水中月。
万有引力教学设计7
一、教学目标:
1、了解万有引力定律在天文学上的重要应用。
2、会用万有引力定律计算天体的质量。
3、掌握综合运用万有引力定律和圆周运动学知识分析具体问题的基本方法。
二、教学重点:
万有引力定律和圆周运动知识在天体运动中的应用
三、教学难点:
天体运动向心力来源的理解和分析
四、教学方法:
启发引导式
五、教学过程:
(一)引入新课
天体之间的作用力主要是万有引力,万有引力定律的发现对天文学的发展起到了巨大的推动作用,这节课我们要来学习万有引力在天文学上有哪些重要应用。
(二)进行新课
1、天体质量的计算
提出问题引导学生思考:在天文学上,天体的质量无法直接测量,能否利用万有引力定律和前面学过的知识找到计算天体质量的`方法呢?
(1)基本思路:在研究天体的运动问题中,我们近似地把一个天体绕另一个天体的运动看作匀速圆周运动,万有引力提供天体作圆周运动的向心力。
万有引力定律在天文学上的应用。
【万有引力教学设计】相关文章:
教学设计模板-教学设计模板07-16
流程设计教学设计12-09
教学设计01-14
教学设计与教学反思04-27
《塞翁失马》教学设计12-24
《林海》教学设计12-25
《春雨》教学设计12-25
春酒教学设计12-26
《童趣》教学设计12-26