比的意义教学设计及反思

时间:2024-06-25 16:39:00 教学反思 我要投稿
  • 相关推荐

比的意义教学设计及反思

  作为一名优秀的教育工作者,通常需要准备好一份教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么问题来了,教学设计应该怎么写?下面是小编整理的比的意义教学设计及反思,希望能够帮助到大家。

比的意义教学设计及反思

比的意义教学设计及反思1

  一、教材分析

  反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

  二、学情分析

  由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

  三、教学目标

  知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

  解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

  四、教学重难点

  重点:理解反比例函数意义,确定反比例函数的表达式.

  难点:反比例函数表达式的确立.

  五、教学过程

  (1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

  (2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

  位:m)随宽x(单位:m)的变化而变化。

  请同学们写出上述函数的表达式

  14631000(2)y= tx

  k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=

  是自变量,y是函数。

  此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

  当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

  举例:下列属于反比例函数的是

  (1)y= (2)xy=10 (3)y=k-1x (4)y= -

  此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

  已知y与x成反比例,则可设y与x的函数关系式为y=

  k x?1

  k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

  已知y+1与x-1成反比例,则可设y与x的.函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

  例:已知y与x2反比例,并且当x=3时y=4

  (1)求出y和x之间的函数解析式

  (2)求当x=1.5时y的值

  解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

  和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

  通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

  六、评价与反思

  本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

比的意义教学设计及反思2

  教学内容:

  《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。

  学生分析:

  在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

  设计理念:

  学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。

  教学目标:

  1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

  2.引导学生揭示知识间的联系,培养学生分析判断、推理能力

  教学流程:

  一、复习铺垫,猜想引入

  师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?

  2.猜想

  师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)

  师:从字面上看“反比例”与“正比例”会是怎样的关系?

  生:相反的。

  师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?

  生:(略)

  反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。

  二、提供材料,组织研究

  1.探究反比例的意义

  师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。

  (1)表中有哪两个相关联的量?

  (2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?

  2.小组讨论、交流。(教师巡回查看,并做适当指导。)

  3.汇报研究结果

  (在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)

  生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。

  生2:已行路程十剩下路程=总路程(一定)。

  生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……

  (最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)

  师:表2和表3中两个量的变化规律有哪些共性?(生答略。)

  师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)

  师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]

  反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。

  4.做一做(略)

  5.学习例6

  师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)

  三、巩固练习,拓展应用

  1.基本练习。(略)

  2.拓展应用。

  师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)

  交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的'同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”

  反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。

  3.综合练习

  四、总结

  反思:

  《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。

比的意义教学设计及反思3

  课时1课时

  所属教材目录冀教版二年级上册第三章第1节

  教材分析

  要求学生初步认识乘法,掌握乘法所表示的意义和读法。本节内容是在学了100以内加减法混合运算以后学习的,学生有了扎实的加法基础。同时学好本节内容也为学习乘法口诀表打下坚实的基础。

  学情分析

  学生学习了100以内的连加和连减。对于求几个相同加数的和,有扎实的计算基础。更容易理解和学习乘法的意义。

  教学目标

  知识与能力目标

  初步认识乘法,知道乘法比加法简便,掌握乘法的意义和读法。

  过程与方法目标

  通过对比法认识乘法,掌握乘法的意义和读法。

  情感态度与价值观目标

  通过对比法学习,认识乘法比加法简便。提高学生学习数学的兴趣。

  教学重难点

  重点

  理解并掌握乘法算式的意义和读法。

  难点

  理解并掌握乘法算式的.读法。

  教学策略与设计说明

  通过连加算式的举例引出乘法的意义。通过对比法理解乘法比加法简便。

  教学过程

  一,复习旧知(5分钟)

  老师在黑板上列出连加算式:

  3+4+5=10+20+30=

  2+2+2=5+5+5=

  师巡视学生计算情况,并适当予以纠正。

  二,探究新知(15分钟)

  大家观察上面四个连加算式有什么不同的地方?

  师引导学生回答后,引出今天的学习内容:今天我们来学习如何更简单的求几个相同加数的和。

  师板书:

  4+4+4+4+4=

  此算式可写成4×5=

  3+3+3+3+3=

  此算式可写成3×5=

  像这样求几个相同加数的和,可以用加法计算,也可以用乘法计算,用乘法计算比较简便。

  4+4+4+4+4

  5个4相加,可以写成4×5或5×4。

  读作:4乘5或5乘4。

  三,课堂巩固练习(5分钟)

  5+5+5+5+5+5

  写成乘法算式是(),

  读作()

  点名四个学生上黑板计算,其他学生在练习本上做。

  四,课堂小结2分钟

  今天我们初步认识了乘法,学习了乘法的意义和读法。求几个相同加数的和,可以用加法计算,也可以用乘法计算,我乘法计算比较简便。

  五,布置作业1分钟

  完成本节书上课后题。

  板书设计

  乘法的认识和意义

  4+4+4+4+45个4相加

  可写成4×5或5×4。读作:4乘5或5乘4。

  教学反思

  我对本节课比较满意,课堂调动了学生的积极性,通过对比法,让学生直观感受乘法比加法简便,学生容易掌握。我最满意的地方是每个学生都积极参与课堂教学,都想上黑板做算式题。本节课总体上达到了我期望的水平,但也有不足之处。在巩固练习阶段,部分学生容易把乘法算式读错。例如:5×6。部分学生读作:五乘六或者5乘6等于30。这些都是错误的读法。原因如下:1,学生把乘法算式的读法和100以内数的读法混淆;2,算式中没有的数想当然地读出来。如果我重新上这节课,我会特别强调乘法算式读法中数字要小写,没有的数不要读。辨别5×6和5×6=30的读法不一样。

比的意义教学设计及反思4

  “小数的产生和意义”这一教学内容属于概念教学,概念教学对培养学生的认知能力、观察能力、迁移能力、抽象概括能力等各方面数学素养有一定的促进作用,也是一种思维的挑战,“小数的产生和意义”体验式教学设计思路及反思。现代教学论认为“最有效的学习是学生对学习过程的体验,它能给予学生自主建构知识和情感体验的空间,激发学生的思维。”新课程关注知识与技能、过程与方法、情感态度与价值观的有效整合,我们的课堂上就要关注学生学习过程中的有效体验,提高学生的学习效率。

  自学校确立体验式教学课题并在课堂教学中开展体验式教学模式以来,我又进一步反思了自己的教学形式,梳理了自己的教学思路,整合了自己的教学模式,改进了自己的教学特色。将体验式教学新生的`元素融进课堂,促进了课堂教学和谐、有效、充实、高效的开展。

  以本节教学内容为例,课堂中有两次大的体验活动。一是在实际测量中感知小数的存在,在生活实际中感受小数的产生。二是在长度单位这个现实背景中,感知一位小数、两位小数、三位小数等的存在,并在小数与分数的观察对比中体验小数与分数的联系从而认识小数的意义。我主要来谈谈第二次体验活动。借助米尺,把一米平均分成10份,每一份是1分米,任取其中的一份会是多少呢?学生会在平均分的基础上想到十分之一,并能写作0.1,这些都是学生三年级下学期的学习经验,这里需要学生感受体验的是什么呢?就是让学生感受把一米平均分成10份,取其中的几份用分数表示这些分数有什么特点,用小数表示这些小数又有什么共同的特点,进而联想到分母是10的分数和一位小数有什么联系?这是在多个案例中学生进行的感知体验活动,在学生有了初步感知经验的基础上让学生在小组里说一说自己发现,一是分享成果,二是给予提示,三是达成共识。小组汇报时我会及时给予评价指导最终师生共同对这一学习过程进行总结就是:分母是10的小数可以写成一位小数。迈出了第一步,学生在后面感受两位小数,三位小数时就会有了一个明确的学习方法,所以在感受两位小数这一环节我会半辅半放让学生先自主感受,再小组交流汇报,这就更加丰富了学生的感性经验,在感受三位小数时,我完全放手让学生自己去感受体验,并脱离小组交流这一拐棍,完全让学生自己形成学习方法,并学有所成。在揭示小数的意义这一神秘面纱时,学生已经积累了一定感性经验,让学生思考“分数和小数有什么联系?”这也是本节课的学习高潮,这一体验活动是学生经验的提升,也是经小组讨论进行简练概括。我认为学到这,学生真正经历了知识的形成过程,学习是有效的。

  反思这节概念教学课,我认为保证学生进行有效的体验,首先要清楚学生已有经验和基础,备课时有所预设,创设的问题情境要简约、直观、有针对性、有思考价值,能激起学生“要去感受体验”的冲动。其次,教师及时必要的梳理、评价、反馈学生的思考交流成果,形成共性的知识成果,及时进行学习方法的指导,形成怎样去学的意识。

比的意义教学设计及反思5

  教学要求:

  1、使学生结合具体情境初步体会小数的含义,能认、读、写小数部分是一位的小数,知道小数各部分的名称。

  2、使学生进一步体会数学与生活的密切联系。

  教学重、难点:能认、读、写小数部分是一位的小数,知道小数各部分的名称。

  教具学具准备:课件。

  教学过程:

  一、复习

  7分米=()米 3角=()元

  9厘米=()分米1分=()角

  二、新授

  1、认识整数部分是0的小数

  出示情境图:芳芳和明明在量桌面的.长和宽,看看他们量的结果是多少?

  (长5分米,宽4分米)

  这是用分米做单位的,如果用米做单位,5分米是几分之几米?4分米呢?(板书)

  师:十分之五米还可以写成0.5米,0.5读作零点五。

  十分之四米还可以写成0.4米,0.4读作零点四。

  (板书补充)

  完整的板书:

  5分米 米 0.5米 读作:零点五米

  4分米 米 0.4米 读作:零点四米

  书空:0.5 0.4

  齐读:零点五 、零点四

  2、认识整数部分不是0的小数

  出示情境图:

  能不能像刚才那样,把几元几角写成以元做单位的数?

  1元2角,想一想,2角是多少元?那么1元2角是多少元?(板书)

  3元5角呢?(板书)

  完整的板书:

  1元2角 1.2元 读作:一点二元

  3元5角 3.5元 读作:三点五元

  书空,齐读。

  3、认识整数、自然数、小数及小数各部分名称

  师:我们以前学过的表示物体个数的1、2、3是自然数,0也是自然数,他们都是整数。像0.5、0.4、1.2、3.5都是小数。小数中间的点叫做小数点,小数点的左边是整数部分,右边是小数部分。

  板书:

  0、1、2、3 自然数 整数

  05、 04、12、 35 小数

  整小小

  数数数

  部点部

  分 分

  分别说一说0.4、1.2、3.5的整数部分和小数部分各是多少。

  三、想想做做

  1:仔细观察图意,说说题目的意思。

  照样子填写。

  说一说每组3个名数之间的联系和区别

  2、3:独立练习。

  4:先同桌互说,再全班交流。

  5:为什么0右面第一个点上填0.1?1右面第二个点上1.2?

  独立填写其他的小数。

  教学后记:

学生说很简单,我可不敢掉以轻心,在小数这一块出问题的可多着呢。要不要说意义?

比的意义教学设计及反思6

  教学内容:人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.

  教学目标:

  知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。

  能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。

  情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  教学重点:理解比例的意义和基本性质.

  教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学理念:充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。

  教学准备:课件

  教学过程:

  一、激趣导入

  1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?

  2、请同学们看大屏幕,课件出示P32页四幅图。

  二、探究新知

  1、比例的意义

  师问:

  ①这四幅图中有什么共同的事物?(齐说)

  ②这四面国旗出现在什么场合或什么地点?(指生回答)

  ③这四面国旗的长与宽分别是多少?(指生回答)

  ④这四面国旗的大小相同吗?

  说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。

  ⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)

  ⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)

  师问:

  ①现在我们选取其中的两个比,如:2、4:1、6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。

  那么我们能用什么符号可以把它们连接成等式?生:等号

  谁来用等号把这两个比写成等式?师板书:2、4:1、6=60:40

  ②如果用比的分数形式来表示这个式子也可写成:或2、4/1、6=60/40

  ③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的?)

  师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的.式子就叫做比例。(板书:比例)

  师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)

  师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  出示板书:表示两个比相等的式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义

  问题:

  ①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)

  ②判断两个比能不能组成比例,关键要看什么?

  ③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)

  我们已经了解了比例的意义,下面我来考一考大家:

  课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。

  2、比例各部分名称

  师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的项?什么是比例的外项?什么是比例的内项?你能举例说明吗?

  学生回答上面的问题,教师课件演示。

  做一做:指出下面比例的内项和外项(课件出示)

  4、5∶2、7=10∶6240/160=144/96

  3、比例的基本性质(课件出示)

  观察:2、4∶1、6=60∶40

  思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)

  用下面的比例验证你的发现:

  6∶10=9∶158∶2=20∶5

  你能用一句话把发现的规律说出来吗?(找3名同学回答)

  下面我们计算2、4:1、6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)

  师:看大屏幕(课件出示)2、4/1、6=60/40

  问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?

  指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件

  演示2、4/1、6=60/40→2、4X40=1、6X60

  4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?

  课件出示:你能根据比例的基本性质判断10:2与2、5:0、5是否可以组成比例?

  讲解时可启发:如果这两个比能组成比例,哪两个数是內项,,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的积。

  因为10X0、5=52X2、5=5,所以假设成立,10:2与2、5:0、5能组成比例,即10:2=2、5:0、5

  5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示

  6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?

  生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的基本性质,看两个外项和两个內项的积是否相等。

  三、巩固新知(课件出示)

  做一做,相信你能行!

  1、判断

  ①10∶5=2是比例。()

  ②在比例里,两个外项的积与两个內项的积的差是O、()

  2、填空

  ①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()

  ②2:9=8:()

  3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)

  四、通过这节课的学习,说说你有什么收获或学到了那些知识?

  五、课后作业:搜集生活中的比例,看看比例在生活中的作用?

  板书设计比例的意义和基本性质

  2、4:1、6=3/260:40=3/2

  2、4:1、6=60:40或2、4/1、6=60/40表示两个比相等的式子叫做比例。

  2、4:1、6=5:10/32、4;1、6=15:10

  5:10/3=15:105:10/3=60:40

  60:40=15:10

  2、4X40=96在比例里,两个外项的积等于两

  1、6X60=96个内项的积。这叫做比例的基本性质。

  《比例的意义和基本性质》教学反思

  本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质。

  教学比例的意义中,我通过出示课本图先了解图意,再写出四面国旗长与宽的比并求比值,根据比值相等进行国旗法教育。然后根据学校里两面国旗的比,得出两个比相等。最后通过四面国旗长与宽的比,写出多个等式,从而概括出比例的意义。其后通过四面国旗宽与长的比巩固比例的意义。比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先通过观察,比较、抽象概括出比例的意义,这样充分发挥了学生的主体作用,让新知不知不觉被学生掌握理解。

  在认识比例的各部分名称时,比例各部分名称我是让学生通过自主看书学习。设计意图是通过重视自学,培养良好的学习习惯。这部分内容非常容易理解,采用自学的方式,通过两个问题检验,培养学生会看书的习惯。在揭示比例的基本性质时,我先让学生先观察比例式,在思考讨论两个內项和两个外项之间的关系,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。这样学生通过亲身经历的计算、观察、验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。

  习题设计时,旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在巩固新知,开阔视野,培养学生逻辑思维能力。

  通过本节课的教学,我深知有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,激发了学生学好数学的信心和积极情感。

  我们知道,数学教学的实质是如何教会学生思维。而这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程。于简单的谈话间,简单的提问中,让学生自己观察比较、通过自己分析思考,总结出了“比例”这一数学概念。于不经意的诱导,促使学生自主探究比例的基本性质,通过计算、观察、比较、验证让学生的思维从先前的不知所向到最后的豁然明朗,个个实实在在地当了一名小小“数学家”,经历了一个愉快的探究过程,获得了成功的体验。整节课处处透出浓浓的数学味。

  本节课把比例的意义和基本性质放在一起学习觉得内容较多,完成教学有些困难,同时比例的灵活应用题目没有达到预先的效果有些遗憾,同时比例在生活中的应用再多一些题目就好了,让学生更加深刻地体会到数学和生活的密切联系。

比的意义教学设计及反思7

  教材分析

  本节是学生首次学习用列方程的方法解决问题,所以字母表示数是学习本章节元知识的基础。按照教材的编写意图,要利用天平让学生亲自参与操作和实验,借助天平平衡的道理建立等式、方程的概念,以加深理解。因此本信息窗安排了三个内容,第一个首先利用天平平衡原理理解等式的意义。第二和第三个红点部分是学习方程的意义。

  1、这节课要求学生进一步认识并掌握用字母表示数,初步了解方程的意义,为以后学习运用准备。

  2、本节课是在学生已经初步认识了字母表示数的基础上进行教学的。

  3、学习本节课是今后继续学习代数知识的基础,同时对发展学生的'多向思维具有举足轻重的作用。

  ,

  学情分析

  本节教学方程的意义,是学生第一次学习有关方程的知识。根据学生的年龄心理特点及生活经验,鼓励学生多观察、多讨论、多探究、多协作、多操作,采用了观察法、讨论法、探索协作学习法和操作法,使学生成为学习的主人。经过探索,掌握方程的特点和意义。

  教学目标

  1.能利用天平,通过动手操作理解等式的意义。

  2.结合具体实例和情景,初步理解方程的意义,会用方程表

  达简单的等量关系。

  3.培养保护动物的意识,感受数学与生活的密切联系,提高

  学习数学的兴趣。

  教学重点和难点

  重点:方程意义的理解 难点:建立等式、方程的概念

  教学过程

比的意义教学设计及反思8

  教学目标:

  1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。

  2.经历探索小数意义的过程,培养归纳能力。

  3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。

  教学重难点:理解小数的意义和小数的计数单位。

  教具准备:米尺、课件。

  教学过程:

  一、回顾导入

  1.读一读信息(课件出示)想一想,这样写符合实际吗?

  (1)老师的体重是565千克。

  (2)小明的身高是145米。

  (3)笑笑的数学测验成绩是935分。

  2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?

  3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。

  二、探索新知识

  1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?

  指名测量,其他同学观看。

  2.汇报测量结果。

  3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。

  4.出示米尺图。

  上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?

  5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?

  十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?

  6.出示米尺。

  指着板书:有什么新发现?学生汇报。

  7.提问:如果我们把1米平均分成1 000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?

  让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。

  学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。

  8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。

  小结:分母是10、100、1 000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……

  进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。

  三、巩固练习

  第一层练习:分数小数互化。

  第二层练习。

  1.填空

  (1)0.8表示( ),它的计数单位是( ),它有( )个这样的计数单位。

  (2)1里面有( )个0.1和( )个0.01。

  (3)0.52是由( )个0.1和( )个0.01组成的。

  2.判断:

  (1)0.8是把1个整体平均分成10份,表示这样的8份。 ( )

  (2)1毫米写成小数是0.01米。 ( )

  第三层练习: 猜数游戏。

  小明和小红的数各是多少?

  四、总结

  师生共同回顾本节课内容。

  反思:

  “小数的产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。

  小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。

  在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1 000份入手,让学生在改动分母是10、100、1000的分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的`不够清楚。

  引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1= 0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。

  最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。

  反思这节课,也有一些地方预设的不够充分:

  1.在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。

  2.练习量较大,没有考虑学生实际。

  “课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!

比的意义教学设计及反思9

  教学内容:人教版小学数学第十一册46页—47页。

  教学目标:

  1、引导学生在参与、探索的过程中,发现并理解比的意义、比与分数、除法的关系,认识比的各部分的名称,学会求比值。

  2、在引导学生知识的发现和探究实践中,培养学生观察、比较、分析事物的能力。发展学生自主探究的意识,并从中感受到数学与生活的密切联系性。

  教学重点:比的意义。

  教学难点:比和除法、分数之间的联系和区别。

  【背景陈述】

  《数学课程标准》强调:数学教学要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,让学生在创设的生动有趣的情境中学习数学。注重“学生收集、整理素材”是课改的一个亮点,它使枯燥、抽象的数学知识更贴近生的社会生活,符合学生的认知经验,使学生在具体的情境中获得基本的数学知识和技能,体验学习数学的价值。我这里的是一节随堂课,体现了新课标的理念,开发了学生的智力。下面是笔者结合自己的教学实践谈一些粗浅的体会。

  【案例描述】

  教学过程:

  一、回忆生活素材,导入新课。

  师;生活中经常有同学说谁比谁高点,谁比谁矮点。也就是说我们要经常比较数量。师:我们学习的数学知识有很多是来源于生活。请同学们根据自己的生活经验估算一下,教室前面的黑板长、宽各大约是多少米?生:长大约是4米,宽大约是3米。师:你们根据这两个数据,你能提出什么问题呢?生1:黑板的面积是多少?

  生2:黑板的周长是多少?

  生3:长是宽的几倍?板书:4÷1生4:宽是长的几分之几?板书:1÷4

  师:长是宽的几倍,宽是长的几分之几是我们以前学过的用除法对黑板的长和宽进行比较,今天,我们要在此基础上,来学习一种新的数学比较方法。(板书:比)

  [评析]:著名的教育家布鲁纳曾经说过:探索是数学的生命线。导入新课时,教师能紧密联系学生的生活实际,采用教室里的各种素材引入课题,不仅是学生感到数学知识的亲切自然,而且容易激发学生的学习兴趣和探索意识。

  二、充分感知,建构意义1、整理生活素材

  师:如长是宽的几倍,除了用4÷1来比较,还可以说成长和宽的比是4比1。(板书:4÷1=4:1)

  宽是长的几分之几,除了用1÷4来比较,还可以说成什么呢?(1÷4=1:4)师:同学们用刚才调查方法,说说教室各种事物还能得到什么数据。你还能把它们用比的形式说一说吗?

  生1:我班男同学人数是32人,女同学人数是23人。男生与女生的比是32比21。生2:教室里的窗户扇数是48扇,门的扇数是2扇。教室窗户扇数与门扇数的比是48比2。生3:教室的长大约是9米,宽大约是6米。教室长与宽的比是9比6。学生可以说出许许多多的数据。(学生情绪高涨,一分钟后陆续汇报。)

  2、再次回忆生活素材,学习新课。师:同学们再仔细观察教室里面还有哪些劳动工具,你平常留意过它们的价格与把数有什么关系吗。我们请两位同学去数一数扫帚的把数,也请全班同学想想每把扫帚要多少钱。根据这些数据你能提什么出什么问题?生:教室里有23把扫帚,从街上买回来要46元钱。生:扫帚总钱数与扫帚把数的比是46比23。(板书:46:23)师:同学们真是聪明,请比较黑板上的最后一组比与前面的几组比在数量上有什么相同和不同的地方。生:前面的比是同一种数量相比较,最后一组比是不同的数量相比较。生:这些相比的数都是只有两个数。师:相同的数量可以进行比较,不同的数量也可以进行比较。相比的数最少要有两个。师:同学们还能说说生活中还有哪些数的比是不同的数相比,请同学们多多举例说明。生:车辆行驶的路程与时间,工作总量与工作时间。等等数据的比都是不同数量的比。生可以举出很多的例子。师:请同学们认真观察黑板是这些数的比是怎么得出来的。谁能说说什么是比?生;这些比都是从两个数相除引出来的,两个数相除又叫做两个数的比。(板书比的定义)师:比是由除法变成的,由于除法的除数不能为零,比的哪一项不能为零呢?请同学们讨论。

  3、练习:判断下面各题是否正确,并说明理由。⑴比的前项是0,后项是1。⑵比的前项是1,后项是0。⑶比的前项和后项都是0。

  学习比的写法:师:你们学会了比的意义,那么比是怎样写的呢?我们来学习比的写法。请学生自学课本上比的写法。请学生上黑板板书比的各部分名称。师;比是由两个数相除得到的,那么我们可以怎样去求比值呢?生;用比的前项除以比的后项,这就是求比值的方法。师:我可以告诉大家它是一个比。比有时也可以用分数形式表示,如:9:6也可以写成9比6。在这里它不是一个数,是一个比。

  师:从这道题你能发现比值的取值范围吗?

  生:比值可以是整数,可以是小数,但更多形式是分数。

  4、练习①说出下面每个比的前项和后项,并说出比值。

  (生积极思考,踊跃回答)师:比除了可以写成这种形式外,还可以写成分数形式。(板书:1:4=),请同学们读一读。特别注意分数形式的比。

  [评析]:在这个环节的教学中,教师能采用学生熟悉的'事物进行探究,在分析比较中抽象概括出比的意义。同时,教师加强了引导,学生则采用了讨论法、读书自学法来进行探究学习。多种机会的创设,为学生提供了表现自己的机会,也为学生提供了多层次、多规则发展的机会,有助于学生创新能力的提高。

  5、比与除法、分数的联系:①比与除法的联系:师:请同学仔细观察比与除法有什么联系?同桌讨论。并填写下表:

  比前项比号后项比值

  除法

  分数

  ②比与分数之间有什么联系师:请同学们自学课本。同桌讨论。生自学课本,并完成上表。师:可能有的同学发现了三者并不一样,比是表示两数的关系,除法是一种运算,分数是代表一个数的。

  在学生初步认识了比的意义后,为了区别数学中的“比”和体育比赛中的“比”的不同,我运用学生活动中常使用的小游戏“锤子、剪子、布”,虽然游戏时间很短,但取得了事半功倍的效果。师:下面请大家来做一个游戏,“锤子、剪子、布”好吗?要求是两人一组,赛四局,然后汇报比分情况。

  (学生情绪高涨,一分钟后陆续汇报。)

  生1:(很高兴)四局比赛我赢了,4比0。

  生2:我和同伴打平局2比2。

  生3:我和同桌的比赛结果是2比3。

  ……

  师板书:4:02:32:20:43:1

  生:老师,比的后项不能为0,这里为什么是0呢?

  生:比赛中的比和我们今天学的比一样吗?

  生:这个2:2可以化简比吗?

  (没等我组织学生讨论,就有学生站了起来。)

  生:2:2只表示双方各得二分,不表示相除关系,不可以化简。

  生:4:0表示对方得0分。

  ……

  师:对!说得好。这是比赛中的一种计分形式,目的是让观众看清两队得分情况。

  生(杨崇俊):足球比赛的计分也有几比几,但它与今天学的比的意义不同。体育比赛中的比是表示两个数的结果,而我们数学里的比是表示两个数的关系。

  [评析]:在本节教学中,我采用了“小游戏”,让学生身临其境,在他们感兴趣的条件下理解“比”的意义。在活动中,学生不是听众,而是参与者,他们可以获得许多不同的感受,并随时提出不同的质疑,无论是质疑还是得到的启迪都是最大的收获,可以说是小小的成功。

  因此,教师精心创设探索、操作实践的情境,对学生创新思维的发展至关重要。在今后的教学中,要让学生真切体验、领悟、发现,最大限度地发挥他们的创造潜能,让课堂中的每一分钟都有满分的收获。

  三、巩固练习:

  ①、苹果是梨的,苹果与梨的比是():()

  ②、我班的男生是女生的1倍,男生人数与女生人数的比是():(),女生人数与男生人数的比是():()

  ③、400千克与0.2吨的比是():()(能直接说出比吗?为什么)强调不同单位名称不能直接相比。

  ④开放题:选择合适的数量组成比

  我校共有学生780人,教师38人,本学期中平均每个学生获得优点卡3张,五年级有学生170人,本学期共获得优点卡560张,其中五(1)班有男生20人,平均每人获得优点卡3.5张。

  学生回答后讲评。

  [评析]:数学教育家波利亚指出:学习任何知识的最佳途径是自己去发现。因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。对于比与分数、除法之间的联系,采用同桌讨论学习、自学的方法,让他们交流、启发,实现有模糊到清晰的过程,正是让学生充分展现自己思维的过程。最后一个开放题的设计,注意联系了我校的特色建设,让学生在“再创造”的过程中巩固新知,创新思维。

  四、小结归纳,应用拓展

  全课小结:现在请大家闭上眼睛,想想今天这节课有什么收获?还有什么疑惑?把你的收获说给你的好朋友听,相互评价一下,学得怎么样?如果有什么疑惑,说给大家听,我们一起想办法解决。好不好?

  [评析]:新的课程标准强调培养学生的应用意识,要让学生认识到现实生活中蕴含着的大量的数学信息、数学在生活中的重要性。结尾部分重点让学生对本节课的教学内容进行有序地梳理,并且帮助老师解决难题,使学生对所学的内容进行了拓展。同时在相互的评价中,使每个学生进一步体验数学学习的成功感。

  课后反思:

  《比的意义》是学生初次接触比的知识的第一个内容。能否透彻理解比的意义,对于比其他知识的学习,起到了至关重要的作用。可以说这节内容在整个比的知识中占有举足轻重的地位。并且《比的意义》中包含的知识点比较多,如:比的意义、比的表示方法、比的各部分名称、比值的求法、比与除法和分数之间的联系和区别、比的后项不可为零。如何把这么多的知识,通过学生在自主探究中发现并解决?多个知识点紧促而成功的串联是我课前备课中的一个主体思想。因此入课时,引导学生通过对教室里黑板长与宽的比较,引出“比”来,让学生感受比在实际生活中的应用,这也是我们课题思想的一个体现。接下来每个知识点的教学,始终通过学生的自主探究,在不断发现问题——解决问题——又发现问题的螺旋式上升过程中进行。每一个知识点的出现和解决不是程序式的,而是抓住学生回答中出现的问题展开教学。教师在不是被学生牵着走,而是让学生自己走。游戏和练习题都体现了开放性。这都体现了新课标的理念。本课重点、难点都得到了突破,学生在轻松愉快的氛围中完成了丰富的教学内容。

【比的意义教学设计及反思】相关文章:

《比的意义》教学设计01-08

《比的意义》教学反思03-10

比的意义教学反思03-25

比的意义的教学反思01-06

《方程的意义》教学设计05-15

小数的意义教学设计02-24

比例的意义教学设计08-24

《比例的意义》教学设计05-29

分数的意义教学设计04-04

比例的意义教学设计07-26